A Bayes Hilbert Space for Compartment Model Computing in Diffusion MRI

  • Aymeric StammEmail author
  • Olivier Commowick
  • Alessandra Menafoglio
  • Simon K. Warfield
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11072)


The single diffusion tensor model for mapping the brain white matter microstructure has long been criticized as providing sensitive yet non-specific clinical biomarkers for neurodegenerative diseases because (i) voxels in diffusion images actually contain more than one homogeneous tissue population and (ii) diffusion in a single homogeneous tissue can be non-Gaussian. Analytic models for compartmental diffusion signals have thus naturally emerged but there is surprisingly little for processing such images (estimation, smoothing, registration, atlasing, statistical analysis). We propose to embed these signals into a Bayes Hilbert space that we properly define and motivate. This provides a unified framework for compartment diffusion image computing. Experiments show that (i) interpolation in Bayes space features improved robustness to noise compared to the widely used log-Euclidean space for tensors and (ii) it is possible to trace complex key pathways such as the pyramidal tract using basic deterministic tractography thanks to the combined use of Bayes interpolation and multi-compartment diffusion models.


  1. 1.
    Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. MRM 56(2), 411–421 (2006)CrossRefGoogle Scholar
  2. 2.
    Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103(3), 247–254 (1994)CrossRefGoogle Scholar
  3. 3.
    van den Boogaart, K.G., Egozcue, J.J., Pawlowsky-Glahn, V.: Bayes Hilbert spaces. Aust. N. Z. J. Stat. 56(2), 171–194 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Egozcue, J.J., Pawlowsky-Glahn, V., Tolosana-Delgado, R., Ortego, M.I., van den Boogaart, K.G.: Bayes spaces: use of improper distributions and exponential families. Rev. Real Acad. Ciencias Exactas, Fis. Nat. Ser. A Mat. 107(2), 475–486 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Le Bihan, D.: Looking into the functional architecture of the brain with diffusion MRI. Nat. Rev. Neurosci. 4(6), 469–480 (2003)CrossRefGoogle Scholar
  6. 6.
    Lenglet, C., et al.: Statistics on the manifold of multivariate normal distributions: theory and application to diffusion tensor MRI processing. JMIV 25(3), 423–444 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mori, S., Crain, B., et al.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45(2), 265–269 (1999)CrossRefGoogle Scholar
  8. 8.
    Panagiotaki, E.: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. Neuroimage 59(3), 2241–2254 (2012)CrossRefGoogle Scholar
  9. 9.
    Pennec, X., Fillard, P., Ayache, N.: A riemannian framework for tensor computing. Int. J. Comput. Vis. 66(1), 41–66 (2006)CrossRefGoogle Scholar
  10. 10.
    Scherrer, B., Warfield, S.K.: Parametric representation of multiple white matter fascicles from cube and sphere diffusion MRI. PLoS One 7(11), e48232 (2012)CrossRefGoogle Scholar
  11. 11.
    Stamm, A., Commowick, O., Warfield, S.K., Vantini, S.: Comprehensive maximum likelihood estimation of diffusion compartment models towards reliable mapping of brain microstructure. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 622–630. Springer, Cham (2016). Scholar
  12. 12.
    Taquet, M., Scherrer, B., et al.: A mathematical framework for the registration and analysis of multi-fascicle models for population studies of the brain microstructure. IEEE TMI 33(2), 504–517 (2014)Google Scholar
  13. 13.
    Wang, B., et al.: When Brownian diffusion is not Gaussian. Nat. Mater. 11(6), 481–485 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Aymeric Stamm
    • 1
    • 2
    Email author
  • Olivier Commowick
    • 3
  • Alessandra Menafoglio
    • 4
  • Simon K. Warfield
    • 2
  1. 1.CADSHuman TechnopoleMilanItaly
  2. 2.CRLBoston Children’s Hospital, Harvard Medical SchoolBostonUSA
  3. 3.Univ. Rennes 1, CNRS, Inria, Inserm, IRISA UMR 6074, VisAGeS U1228RennesFrance
  4. 4.MOX, Department of MathematicsPolitecnico di MilanoMilanItaly

Personalised recommendations