Identification of Gadolinium Contrast Enhanced Regions in MS Lesions Using Brain Tissue Microstructure Information Obtained from Diffusion and T2 Relaxometry MRI

  • Sudhanya ChatterjeeEmail author
  • Olivier Commowick
  • Onur Afacan
  • Simon K. Warfield
  • Christian Barillot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11072)


A multiple sclerosis (MS) lesion at an early stage undergoes active blood brain barrier (BBB) breakdown. Identifying MS lesions in a patient which are undergoing active BBB breakdown is of critical importance for MS burden evaluation and treatment planning. However in non-contrast enhanced structural magnetic resonance imaging (MRI) the regions of the lesion undergoing active BBB breakdown cannot be distinguished from the other parts of the lesion. Hence gadolinium (Gd) contrast enhanced T1-weighted MR images are used for this task. However some side effects of Gd injection into patients have been increasingly reported recently. The BBB breakdown is reflected by the condition of tissue microstructure such as increased inflammation, presence of higher extra-cellular matter and debris. We thus propose a framework to predict enhancing regions in MS lesions using tissue microstructure information derived from T2 relaxometry and diffusion MRI (dMRI) multi-compartment models. We show that combination of the dMRI and T2 relaxometry microstructure information can distinguish the Gd enhancing lesion regions from the other regions in MS lesions.


Diffusion MRI T2 relaxometry Microstructure Brain Multiple sclerosis 


  1. 1.
    Guttmann, C., Ahn, S.S., Hsu, L., Kikinis, R., Jolesz, F.A.: The evolution of multiple sclerosis lesions on serial MR. AJNR 16(7), 1481–1491 (1995)Google Scholar
  2. 2.
    Lassmann, H., Bruck, W., Lucchinetti, C.: Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol. Med. 7(3), 115–121 (2001)CrossRefGoogle Scholar
  3. 3.
    Brownlee, W.J., Hardy, T.A., Fazekas, F., Miller, D.H.: Diagnosis of multiple sclerosis: progress and challenges. Lancet 389(10076), 1336–1346 (2017)CrossRefGoogle Scholar
  4. 4.
    Kanda, T., Ishii, K., Kawaguchi, H., Kitajima, K., Takenaka, D.: High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270(3), 834–841 (2013)CrossRefGoogle Scholar
  5. 5.
    Olchowy, C., et al.: The presence of the gadolinium-based contrast agent depositions in the brain and symptoms of gadolinium neurotoxicity-a systematic review. PLoS One 12(2), e0171704 (2017)CrossRefGoogle Scholar
  6. 6.
    Gulani, V., Calamante, F., Shellock, F.G., Kanal, E., Reeder, S.B., et al.: Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol. 16(7), 564–570 (2017)CrossRefGoogle Scholar
  7. 7.
    Panagiotaki, E., et al.: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. Neuroimage 59(3), 2241–2254 (2012)CrossRefGoogle Scholar
  8. 8.
    Laule, C., et al.: Magnetic resonance imaging of myelin. Neurotherapeutics 4(3), 460–484 (2007)CrossRefGoogle Scholar
  9. 9.
    MacKay, A.L., Laule, C.: Magnetic resonance of myelin water: an in vivo marker for myelin. Brain Plast. 2(1), 71–91 (2016)CrossRefGoogle Scholar
  10. 10.
    Lancaster, J.L., Andrews, T., Hardies, L.J., Dodd, S., Fox, P.T.: Three-pool model of white matter. J. Magn. Reson. Imaging 17(1), 1–10 (2003)CrossRefGoogle Scholar
  11. 11.
    Crawley, A., Henkelman, R.: Errors in T2 estimation using multislice multiple-echo imaging. MRM 4(1), 34–47 (1987)CrossRefGoogle Scholar
  12. 12.
    Prasloski, T., Mädler, B., Xiang, Q.S., MacKay, A., Jones, C.: Applications of stimulated echo correction to multicomponent T2 analysis. MRM 67(6), 1803–1814 (2012)CrossRefGoogle Scholar
  13. 13.
    Layton, K.J., Morelande, M., Wright, D., Farrell, P.M., Moran, B., Johnston, L.A.: Modelling and estimation of multicomponent T2 distributions. IEEE TMI 32(8), 1423–1434 (2013)Google Scholar
  14. 14.
    Stamm, A., Commowick, O., Warfield, S.K., Vantini, S.: Comprehensive maximum likelihood estimation of diffusion compartment models towards reliable mapping of brain microstructure. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 622–630. Springer, Cham (2016). Scholar
  15. 15.
    Commowick, O., Wiest-Daesslé, N., Prima, S.: Block-matching strategies for rigid registration of multimodal medical images. In: 9th ISBI, pp. 700–703. IEEE (2012)Google Scholar
  16. 16.
    Ourselin, S., Roche, A., Prima, S., Ayache, N.: Block matching: a general framework to improve robustness of rigid registration of medical images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 557–566. Springer, Heidelberg (2000). Scholar
  17. 17.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sudhanya Chatterjee
    • 1
    Email author
  • Olivier Commowick
    • 1
  • Onur Afacan
    • 2
  • Simon K. Warfield
    • 2
  • Christian Barillot
    • 1
  1. 1.Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, VisAGeS U1228RennesFrance
  2. 2.CRLBoston Children’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations