Advertisement

Revealing Regional Associations of Cortical Folding Alterations with In Utero Ventricular Dilation Using Joint Spectral Embedding

  • Oualid M. BenkarimEmail author
  • Gerard Sanroma
  • Gemma Piella
  • Islem Rekik
  • Nadine Hahner
  • Elisenda Eixarch
  • Miguel Angel González Ballester
  • Dinggang Shen
  • Gang Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11072)

Abstract

Fetal ventriculomegaly (VM) is a condition with dilation of one or both lateral ventricles, and is diagnosed as an atrial diameter larger than 10 mm. Evidence of altered cortical folding associated with VM has been shown in the literature. However, existing studies use a holistic approach (i.e., ventricle as a whole) based on diagnosis or ventricular volume, thus failing to reveal the spatially-heterogeneous association patterns between cortex and ventricle. To address this issue, we develop a novel method to identify spatially fine-scaled association maps between cortical development and VM by leveraging vertex-wise correlations between the growth patterns of both ventricular and cortical surfaces in terms of area expansion and curvature information. Our approach comprises multiple steps. In the first step, we define a joint graph Laplacian matrix using cortex-to-ventricle correlations. Next, we propose a spectral embedding of the cortex-to-ventricle graph into a common underlying space where their joint growth patterns are projected. More importantly, in the joint ventricle-cortex space, the vertices of associated regions from both cortical and ventricular surfaces would lie close to each other. In the final step, we perform clustering in the joint embedded space to identify associated sub-regions between cortex and ventricle. Using a dataset of 25 healthy fetuses and 23 fetuses with isolated non-severe VM within the age range of 26–29 gestational weeks, our results show that the proposed approach is able to reveal clinically relevant and meaningful regional associations.

Keywords

Joint spectral embedding Ventriculomegaly Fetal Cortical folding 

Notes

Acknowledgments

This research was partially funded by the “Fundació La Marató de TV3” (no. 20154031) and supported in part by National Institutes of Health grants (MH100217, MH107815, MH108914, and MH116225). It has also been funded by Instituto de Salud Carlos III (PI16/00861) integrados en el Plan Nacional de I+D+I y cofinanciados por el ISCIII-Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER) “Una manera de hacer Europa”, “la Caixa” Foundation, and The Cerebra Foundation for the Brain-Injured Child, Carmarthen, Wales.

References

  1. 1.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)CrossRefGoogle Scholar
  2. 2.
    Benkarim, O.M., Hahner, N., Piella, G., et al.: Cortical folding alterations in fetuses with isolated non-severe ventriculomegaly. NeuroImage: Clin. 18, 103–114 (2018)CrossRefGoogle Scholar
  3. 3.
    Benkarim, O.M., Sanroma, G., Zimmer, V.A., et al.: Toward the automatic quantification of in utero brain development in 3D structural MRI: a review. Hum. Brain Mapp. 38(5), 2772–2787 (2017)CrossRefGoogle Scholar
  4. 4.
    Cardoza, J., Goldstein, R., Filly, R.: Exclusion of fetal ventriculomegaly with a single measurement: the width of the lateral ventricular atrium. Radiology 169(3), 711–714 (1988)CrossRefGoogle Scholar
  5. 5.
    Kyriakopoulou, V., Vatansever, D., Elkommos, S., et al.: Cortical overgrowth in fetuses with isolated ventriculomegaly. Cereb Cortex 24(8), 2141–2150 (2014)CrossRefGoogle Scholar
  6. 6.
    Li, G., Nie, J., Wang, L., et al.: Mapping region-specific longitudinal cortical surface expansion from birth to 2 years of age. Cereb Cortex 23(11), 2724–2733 (2013)CrossRefGoogle Scholar
  7. 7.
    Murgasova, M., Quaghebeur, G., Rutherford, M.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16(8), 1550–1564 (2012)CrossRefGoogle Scholar
  8. 8.
    Sanroma, G., Benkarim, O.M., Piella, G., Ballester, M.Á.G.: Building an ensemble of complementary segmentation methods by exploiting probabilistic estimates. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 27–35. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47157-0_4CrossRefGoogle Scholar
  9. 9.
    Scott, J., Habas, P., Rajagopalan, V., et al.: Volumetric and surface-based 3D MRI analyses of fetal isolated mild ventriculomegaly. Brain Struct. Funct. 218(3), 645–655 (2013)CrossRefGoogle Scholar
  10. 10.
    Wang, B., Mezlini, A.M., Demir, F., et al.: Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333–337 (2014)CrossRefGoogle Scholar
  11. 11.
    Xia, J., Zhang, C., Wang, F., et al.: Fetal cortical parcellation based on growth patterns. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 696–699 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Oualid M. Benkarim
    • 1
    Email author
  • Gerard Sanroma
    • 5
  • Gemma Piella
    • 1
  • Islem Rekik
    • 2
  • Nadine Hahner
    • 3
  • Elisenda Eixarch
    • 3
  • Miguel Angel González Ballester
    • 1
    • 6
  • Dinggang Shen
    • 4
  • Gang Li
    • 4
  1. 1.BCN MedtechUniversitat Pompeu FabraBarcelonaSpain
  2. 2.BASIRA Lab, CVIP Group, School of Science and Engineering, ComputingUniversity of DundeeDundeeUK
  3. 3.BCNatal, Hospital Clínic and Hospital Sant Joan de DéuBarcelonaSpain
  4. 4.Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillUSA
  5. 5.Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE)BonnGermany
  6. 6.ICREABarcelonaSpain

Personalised recommendations