Advertisement

Initialize Globally Before Acting Locally: Enabling Landmark-Free 3D US to MRI Registration

  • Julia RackersederEmail author
  • Maximilian Baust
  • Rüdiger Göbl
  • Nassir Navab
  • Christoph Hennersperger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11070)

Abstract

Registration of partial-view 3D US volumes with MRI data is influenced by initialization. The standard of practice is using extrinsic or intrinsic landmarks, which can be very tedious to obtain. To overcome the limitations of registration initialization, we present a novel approach that is based on Euclidean distance maps derived from easily obtainable coarse segmentations. We evaluate our approach on a publicly available brain tumor dataset (RESECT) and show that it is robust regarding minimal to no overlap of target area and varying initial position. We demonstrate that our method provides initializations that greatly increase the capture range of state-of-the-art nonlinear registration algorithms.

References

  1. 1.
    Viergever, M.A., Maintz, J.A., Klein, S., Murphy, K., Staring, M., Pluim, J.P.: A survey of medical image registration–under review. Med. Image Anal. 33, 140–144 (2016)CrossRefGoogle Scholar
  2. 2.
    Fuerst, B., Wein, W., Müller, M., Navab, N.: Automatic ultrasound-MRI registration for neurosurgery using the 2D and 3D LC2 metric. Med. Image Anal. 18(8), 1312–1319 (2014)CrossRefGoogle Scholar
  3. 3.
    Xiao, Y., Fortin, M., Unsgård, G., Rivaz, H., Reinertsen, I.: Retrospective evaluation of cerebral tumors (RESECT): a clinical database of pre-operative MRI and intra-operative ultrasound in low-grade glioma surgeries. Med. Phys. 44, 3875–3882 (2017)CrossRefGoogle Scholar
  4. 4.
    Rodriguez, A., Guillén, J.J., López, M.J., Vassena, R., Coll, O., Vernaeve, V.: Learning curves in 3-dimensional sonographic follicle monitoring during controlled ovarian stimulation. J. Ultrasound Med. 33(4), 649–655 (2014)CrossRefGoogle Scholar
  5. 5.
    Coupé, P., Hellier, P., Morandi, X., Barillot, C.: 3D rigid registration of intraoperative ultrasound and preoperative MR brain images based on hyperechogenic structures. J. Biomed. Imaging 2012, 1 (2012)CrossRefGoogle Scholar
  6. 6.
    Mabee, M., Dulai, S., Thompson, R.B., Jaremko, J.L.: Reproducibility of acetabular landmarks and a standardized coordinate system obtained from 3D hip ultrasound. Ultrason. Imaging 37(4), 267–276 (2015)CrossRefGoogle Scholar
  7. 7.
    Fedorov, A., et al.: Open-source image registration for MRI–TRUS fusion-guided prostate interventions. Int. J. Comput. Assist. Radiol. Surg. 10(6), 925–934 (2015)CrossRefGoogle Scholar
  8. 8.
    Itti, L., Chang, L., Mangin, J.F., Darcourt, J., Ernst, T.: Robust multimodality registration for brain mapping. Hum. Brain Mapp. 5(1), 3–17 (1997)CrossRefGoogle Scholar
  9. 9.
    Slavcheva, M., Kehl, W., Navab, N., Ilic, S.: SDF-2-SDF: highly accurate 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 680–696. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46448-0_41CrossRefGoogle Scholar
  10. 10.
    Fedorov, A., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)CrossRefGoogle Scholar
  11. 11.
    Fischl, B., et al.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3), 341–355 (2002)CrossRefGoogle Scholar
  12. 12.
    Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)CrossRefGoogle Scholar
  13. 13.
    Fitzpatrick, J.M., West, J.B., Maurer, C.R.: Predicting error in rigid-body point-based registration. IEEE Trans. Med. Imaging 17(5), 694–702 (1998)CrossRefGoogle Scholar
  14. 14.
    Park, A., Nam, D., Friedman, M.V., Duncan, S.T., Hillen, T.J., Barrack, R.L.: Inter-observer precision and physiologic variability of MRI landmarks used to determine rotational alignment in conventional and patient-specific TKA. J. Arthroplast. 30(2), 290–295 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Julia Rackerseder
    • 1
    Email author
  • Maximilian Baust
    • 2
  • Rüdiger Göbl
    • 1
  • Nassir Navab
    • 1
    • 3
  • Christoph Hennersperger
    • 1
    • 4
  1. 1.Technische Universität MünchenMunichGermany
  2. 2.Konica Minolta Laboratory EuropeMunichGermany
  3. 3.Johns Hopkins UniversityBaltimoreUSA
  4. 4.Trinity College DublinDublinIreland

Personalised recommendations