Advertisement

Small Organ Segmentation in Whole-Body MRI Using a Two-Stage FCN and Weighting Schemes

  • Vanya V. Valindria
  • Ioannis Lavdas
  • Juan Cerrolaza
  • Eric O. Aboagye
  • Andrea G. Rockall
  • Daniel Rueckert
  • Ben Glocker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11046)

Abstract

Accurate and robust segmentation of small organs in whole-body MRI is difficult due to anatomical variation and class imbalance. Recent deep network based approaches have demonstrated promising performance on abdominal multi-organ segmentations. However, the performance on small organs is still suboptimal as these occupy only small regions of the whole-body volumes with unclear boundaries and variable shapes. A coarse-to-fine, hierarchical strategy is a common approach to alleviate this problem, however, this might miss useful contextual information. We propose a two-stage approach with weighting schemes based on auto-context and spatial atlas priors. Our experiments show that the proposed approach can boost the segmentation accuracy of multiple small organs in whole-body MRI scans.

Notes

Acknowledgements

V. Valindria is supported by the Indonesia Endowment for Education (LPDP)- Indonesian Presidential PhD Scholarship programme. B. Glocker received funding from the European Research Council (ERC) under the EU’s Horizon 2020 research and innovation programme (grant agreement No 757173, project MIRA, ERC-2017-STG).

The MRI data has been collected as part of the MALIBO project funded by the Efficacy and Mechanism Evaluation (EME) Programme, an MRC and NIHR partnership (EME project 13/122/01). The views expressed in this publication are those of the authors and not necessarily those of the MRC, NHS, NIHR or the Department of Health.

References

  1. 1.
    Bai, W., et al.: A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE Trans. Med. Imaging 32(7), 1302–1315 (2013)CrossRefGoogle Scholar
  2. 2.
    Cai, J., Lu, L., Xie, Y., Xing, F., Yang, L.: Improving deep pancreas segmentation in CT and MRI images via recurrent neural contextual learning and direct loss function. arXiv preprint arXiv:1707.04912 (2017)
  3. 3.
    Cerrolaza, J.J., Summers, R.M., Linguraru, M.G.: Soft multi-organ shape models via generalized PCA: a general framework. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 219–228. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46726-9_26CrossRefGoogle Scholar
  4. 4.
    Christ, P.F., et al.: Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 415–423. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46723-8_48CrossRefGoogle Scholar
  5. 5.
    Gibson, E., et al.: Automatic multi-organ segmentation on abdominal CT with dense V-networks. IEEE Trans. Med. Imaging (2018)Google Scholar
  6. 6.
    Larsson, M., Zhang, Y., Kahl, F.: Robust abdominal organ segmentation using regional CNNs. In: Scandinavian Conference on Image Analysis, pp. 41–52 (2017)CrossRefGoogle Scholar
  7. 7.
    Lavdas, I., et al.: Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach. Med. Phys. 44(10), 5210–5220 (2017)CrossRefGoogle Scholar
  8. 8.
    Lavdas, I., et al.: Apparent diffusion coefficient of normal abdominal organs and bone marrow from whole-body DWI at 1.5 T: the effect of sex and age. Am. J. Roentgenol. 205(2), 242–250 (2015)CrossRefGoogle Scholar
  9. 9.
    Oktay, O., et al.: Attention U-net: learning where to look for the pancreas. arXiv:1804.03999 (2018)
  10. 10.
    Pawlowski, N., et al.: DLTK: state of the art reference implementations for deep learning on medical images. In: Medical Imaging meet NIPS Workshop (2017)Google Scholar
  11. 11.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  12. 12.
    Roth, H.R., et al.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24553-9_68Google Scholar
  13. 13.
    Roth, H.R., Lu, L., Farag, A., Sohn, A., Summers, R.M.: Spatial aggregation of holistically-nested networks for automated Pancreas segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 451–459. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46723-8_52CrossRefGoogle Scholar
  14. 14.
    Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE PAMI 32(10), 1744–1757 (2010)CrossRefGoogle Scholar
  15. 15.
    Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR (2016)Google Scholar
  16. 16.
    Yu, Q., Xie, L., Wang, Y., Zhou, Y., Fishman, E.K., Yuille, A.L., et al.: Recurrent saliency transformation network: incorporating multi-stage visual cues for small organ segmentation. In: CVPR (2018)Google Scholar
  17. 17.
    Zhou, Y., Xie, L., Fishman, E.K., Yuille, A.L.: Deep supervision for pancreatic cyst segmentation in abdominal CT scans. In: MICCAI (2017)Google Scholar
  18. 18.
    Zhou, Y., Xie, L., Shen, W., Wang, Y., Fishman, E.K., Yuille, A.L., et al.: A fixed-point model for Pancreas segmentation in abdominal CT scans. In: MICCAI (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Vanya V. Valindria
    • 1
  • Ioannis Lavdas
    • 2
  • Juan Cerrolaza
    • 1
  • Eric O. Aboagye
    • 2
  • Andrea G. Rockall
    • 2
  • Daniel Rueckert
    • 1
  • Ben Glocker
    • 1
  1. 1.Biomedical Image Analysis Group, Department of ComputingLondonUK
  2. 2.Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College LondonLondonUK

Personalised recommendations