Advertisement

Combining Deep Learning and Active Contours Opens The Way to Robust, Automated Analysis of Brain Cytoarchitectonics

  • Konstantin Thierbach
  • Pierre-Louis Bazin
  • Walter de Back
  • Filippos Gavriilidis
  • Evgeniya Kirilina
  • Carsten Jäger
  • Markus Morawski
  • Stefan Geyer
  • Nikolaus Weiskopf
  • Nico Scherf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11046)

Abstract

Deep learning has thoroughly changed the field of image analysis yielding impressive results whenever enough annotated data can be gathered. While partial annotation can be very fast, manual segmentation of 3D biological structures is tedious and error-prone. Additionally, high-level shape concepts such as topology or boundary smoothness are hard if not impossible to encode in Feedforward Neural Networks. Here we present a modular strategy for the accurate segmentation of neural cell bodies from light-sheet microscopy combining mixed-scale convolutional neural networks and topology-preserving geometric deformable models. We show that the network can be trained efficiently from simple cell centroid annotations, and that the final segmentation provides accurate cell detection and smooth segmentations that do not introduce further cell splitting or merging.

Keywords

Histology Image segmentation Cell detection Deep learning Convolutional neural networks Active contours 

References

  1. 1.
    Bogovic, J.A., Prince, J.L., Bazin, P.L.: A multiple object geometric deformable model for image segmentation. Comput. Vis. Image Underst. 117(2), 145–157 (2013)CrossRefGoogle Scholar
  2. 2.
    Brodmann, K.: Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth (1909)Google Scholar
  3. 3.
    Chung, K., Deisseroth, K.: CLARITY for mapping the nervous system. Nat. Methods 10(6), 508–513 (2013)CrossRefGoogle Scholar
  4. 4.
    von Economo, C.F., Koskinas, G.N.: Die cytoarchitektonik der hirnrinde des erwachsenen menschen. J. Springer (1925)Google Scholar
  5. 5.
    Hilsenbeck, O., Schwarzfischer, M., Loeffler, D., Dimopoulos, S., Hastreiter, S., Marr, C., Theis, F.J., Schroeder, T.: fastER: a user-friendly tool for ultrafast and robust cell segmentation in large-scale microscopy. Bioinformatics (2017)Google Scholar
  6. 6.
    Hu, P., Shuai, B., Liu, J., Wang, G.: Deep level sets for salient object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 540–549. IEEE Computer Society (2017)Google Scholar
  7. 7.
    Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., Stelzer, E.H.K.: Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686), 1007–1009 (2004)CrossRefGoogle Scholar
  8. 8.
    Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.J.: Others: Principles of Neural Science, vol. 4. McGraw-hill, New York (2000)Google Scholar
  9. 9.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  10. 10.
    Morawski, M., et al.: Developing 3D microscopy with CLARITY on human brain tissue: towards a tool for informing and validating MRI-based histology. Neuroimage (2017)Google Scholar
  11. 11.
    Pelt, D.M., Sethian, J.A.: A mixed-scale dense convolutional neural network for image analysis. Proc. Natl. Acad. Sci. U.S.A. 115(2), 254–259 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  13. 13.
    Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. (2017)Google Scholar
  14. 14.
    Tang, M., Valipour, S., Zhang, Z., Cobzas, D., Jagersand, M.: A deep level set method for image segmentation. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 126–134. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67558-9_15CrossRefGoogle Scholar
  15. 15.
    Vogt, C., Vogt, O.: Allgemeine ergebnisse unserer hirnforschung I-IV. J. Psychol. Neurol. (Lpz.) 25, Erg. heft 1, 279–462 (1919)Google Scholar
  16. 16.
    Xie, W., Noble, J.A., Zisserman, A.: Microscopy cell counting and detection with fully convolutional regression networks. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 1–10 (2016)Google Scholar
  17. 17.
    Zeiler, M.D.: Adadelta: an adaptive learning rate method. CoRR arXiv:abs/1212.5701 (2012)
  18. 18.
    Zilles, K., Schleicher, A., Palomero-Gallagher, N., Amunts, K.: Quantitative analysis of cyto-and receptor architecture of the human brain. Brain Mapping: The Methods (Second Edition), pp. 573–602. Elsevier, New York (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Konstantin Thierbach
    • 1
  • Pierre-Louis Bazin
    • 1
    • 2
  • Walter de Back
    • 5
  • Filippos Gavriilidis
    • 1
  • Evgeniya Kirilina
    • 1
    • 3
  • Carsten Jäger
    • 1
  • Markus Morawski
    • 4
  • Stefan Geyer
    • 1
  • Nikolaus Weiskopf
    • 1
  • Nico Scherf
    • 1
  1. 1.Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
  2. 2.University of AmsterdamAmsterdamThe Netherlands
  3. 3.Center for Cognitive Neuroscience BerlinFree University BerlinBerlinGermany
  4. 4.Paul Flechsig Institute of Brain ResearchUniversity of LeipzigLeipzigGermany
  5. 5.Institute for Medical Informatics and Biometry, TU DresdenDresdenGermany

Personalised recommendations