Brain Status Prediction with Non-negative Projective Dictionary Learning

  • Mingli ZhangEmail author
  • Christian Desrosiers
  • Yuhong Guo
  • Caiming Zhang
  • Budhachandra Khundrakpam
  • Alan Evans
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11046)


Study on brain status prediction has recently received increasing attention from the research community. In this paper, we propose to tackle brain status prediction by learning a discriminative representation of the data with a novel non-negative projective dictionary learning (NPDL) approach. The proposed approach performs class-wise projective dictionary learning, which uses an analysis dictionary to generate non-negative coding vectors from the data, and a synthesis dictionary to reconstruct the data. We formulate the learning problem as a constrained non-convex optimization problem and solve it via an alternating direction method of multipliers (ADMM). To investigate the effectiveness of the proposed approach on brain status prediction, we conduct experiments on two datasets, ADNI and NIH Study of Normal Brain Development repository, and report superior results over comparison methods.



This work is supported by HBHL FRQ/CCC Axis X-C (Funding No. 246117), Canada, NSFC Joint Fund with Zhejiang Integration of Informatization and Industrialization under Key Project (U1609218), China.


  1. 1.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends\(\textregistered \). Mach. Learn. 3(1), 1–122 (2011)CrossRefGoogle Scholar
  2. 2.
    Cole, J.H., Franke, K.: Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci. 40, 681–690 (2017)CrossRefGoogle Scholar
  3. 3.
    Eskildsen, S.F., Coupé, P., Fonov, V.S., Pruessner, J.C., Collins, D.L., Initiative, A.D.N.: Structural imaging biomarkers of Alzheimer’s disease: predicting disease progression. Neurobiol. Aging 36, S23–S31 (2015)CrossRefGoogle Scholar
  4. 4.
    Evans, A.C., Group, B.D.C., et al.: The NIH MRI study of normal brain development. Neuroimage 30(1), 184–202 (2006)CrossRefGoogle Scholar
  5. 5.
    Franke, K., Luders, E., May, A., Wilke, M., Gaser, C.: Brain maturation: predicting individual BrainAGE in children and adolescents using structural MRI. Neuroimage 63(3), 1305–1312 (2012)CrossRefGoogle Scholar
  6. 6.
    Gu, S., Zhang, L., Zuo, W., Feng, X.: Projective dictionary pair learning for pattern classification. Adv. Neural Inf. Process. Syst. 793–801 (2014)Google Scholar
  7. 7.
    Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hong, M., Luo, Z.Q., Razaviyayn, M.: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J. Optim. 26(1), 337–364 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Khundrakpam, B.S., Tohka, J., Evans, A.C., Group, B.D.C., et al.: Prediction of brain maturity based on cortical thickness at different spatial resolutions. Neuroimage 111, 350–359 (2015)CrossRefGoogle Scholar
  10. 10.
    Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., Initiative, A.D.N., et al.: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 104, 398–412 (2015)CrossRefGoogle Scholar
  11. 11.
    Tong, T., Gao, Q., Guerrero, R., Ledig, C., Chen, L., Rueckert, D., Initiative, A.D.N.: A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer’s disease. IEEE Trans. Biomed. Eng. 64(1), 155–165 (2017)CrossRefGoogle Scholar
  12. 12.
    Xu, Z., De, S., Figueiredo, M., Studer, C., Goldstein, T.: An empirical study of admm for nonconvex problems. arXiv preprint arXiv:1612.03349 (2016)
  13. 13.
    Zhu, X.C., et al.: Rate of early onset alzheimers disease: a systematic review and meta-analysis. Ann. Trans. Med. 3(3) (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mingli Zhang
    • 1
    Email author
  • Christian Desrosiers
    • 2
  • Yuhong Guo
    • 3
  • Caiming Zhang
    • 4
  • Budhachandra Khundrakpam
    • 1
  • Alan Evans
    • 1
  1. 1.Montreal Neurological Institute, McGill UniversityMontrealCanada
  2. 2.École de Technologie SupérieureMontrealCanada
  3. 3.School of Computer ScienceCarleton UniversityOttawaCanada
  4. 4.Shandong Co-Innovation Center of Future Intelligent ComputingYantaiChina

Personalised recommendations