A Literature Review on Container Handling in Yard Blocks

  • Filip CovicEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11184)


The yard block of a container terminal is the central point of synchronisation for asynchronous container flows between the transport by deep sea vessels and the hinterland. The structure of the block stipulates that containers are stacked onto each other while only the topmost container can be accessed directly by a yard crane. This stacking restriction shapes the general framework of container handling in yard blocks. The optimisation of stacking configurations within a block has been a continuously growing stream of research in container terminal planning leading to a diverse set of problem definitions, modelling techniques and solution approaches. In this regard, an extensive literature review is conducted in this work surveying container handling problems in the time-span 1997–2018. For this purpose, the major handling problems and their versions are conceptually defined. Next, the surveyed studies are systematically classified and compared based on key properties for practical yard block planning as well as for a theoretical analysis of container stacking. Afterwards, the work is aligned with other literature reviews in this field and a conclusion is given in order to provide a comprehensive overview of container handling problems. Eventually, this should support the identification of open questions in existing problems and the initialisation of new research streams in future research.


Container terminal Container handling Yard operations Literature review 


  1. Akyüz, M.H., Lee, C.Y.: A mathematical formulation and efficient heuristics for the dynamic container relocation problem. Naval Res. Logistics 61(2), 101–118 (2014)MathSciNetCrossRefGoogle Scholar
  2. Angeloudis, P., Bell, M.G.H.: A review of container terminal simulation models. Marit. Policy Manage. 38(5), 523–540 (2011)CrossRefGoogle Scholar
  3. Asperen, E., van Borgman, B., Dekker, R.: Evaluating impact of truck announcements on container stacking efficiency. Flex. Serv. Manuf. J. 25(4), 543–556 (2013)CrossRefGoogle Scholar
  4. Bierwirth, C., Meisel, F.: A survey of berth allocation and quay crane scheduling problems in container terminals. Eur. J. Oper. Res. 202(3), 615–627 (2010)MathSciNetCrossRefGoogle Scholar
  5. Bierwirth, C., Meisel, F.: A follow-up survey of berth allocation and quay crane scheduling problems in container terminals. Eur. J. Oper. Res. 244(3), 675–689 (2015)MathSciNetCrossRefGoogle Scholar
  6. Borgman, B., van Asperen, E., Dekker, R.: Online rules for container stacking. OR Spectrum 32(3), 687–716 (2010)CrossRefGoogle Scholar
  7. Borjian, S., Manshadi, V.H., Barnhart, C., Jaillet, P.: Dynamic Stochastic Optimization of Relocations in Container Terminals. Working paper, MIT (2013)Google Scholar
  8. Bortfeldt, A., Forster, F.: A tree search procedure for the container pre-marshalling problem. Eur. J. Oper. Res. 217(3), 531–540 (2012)MathSciNetCrossRefGoogle Scholar
  9. Boysen, N., Stephan, K.: A survey on single crane scheduling in automated storage/retrieval systems. Eur. J. Oper. Res. 254(3), 691–704 (2016)MathSciNetCrossRefGoogle Scholar
  10. Boysen, N., Briskorn, D., Meisel, F.: A generalized classification scheme for crane scheduling with interference. Eur. J. Oper. Res. 258(1), 343–357 (2017)MathSciNetCrossRefGoogle Scholar
  11. Brinkmann, B.: Operations systems of container terminals: a compendious overview. In: Böse, J. (ed.) Handbook of Terminal Planning. Operations Research/Computer Science Interfaces Series, vol. 49, pp. 25–39. Springer, New York (2011).
  12. Bruns, F., Knust, S., Shakhlevich, N.V.: Complexity results for storage loading problems with stacking constraints. Eur. J. Oper. Res. 249(3), 1074–1081 (2016)MathSciNetCrossRefGoogle Scholar
  13. Carlo, H.J., Vis, I.F.A., Roodbergen, K.J.: Storage yard operations in container terminals: literature overview, trends, and research directions. Eur. J. Oper. Res. 235(2), 412–430 (2014a)Google Scholar
  14. Carlo, H.J., Vis, I.F.A., Roodbergen, K.J.: Transport operations in container terminals: literature overview, trends, research directions and classification scheme. Eur. J. Oper. Res. 236(1), 1–13 (2014b)Google Scholar
  15. Carlo, H.J., Vis, I.F.A., Roodbergen, K.J.: Seaside operations in container terminals: literature overview, trends, and research directions. Flex. Serv. Manuf. J. 27(2–3), 224–262 (2015)CrossRefGoogle Scholar
  16. Caserta, M., Voß, S.: Metaheuristics: intelligent problem solving. In: Maniezzo, V., Stützle, T., Voß, S. (eds.) Matheuristics. Annals of Information Systems, vol. 10, pp. 1–38. Springer, Boston (2009a).
  17. Caserta, M., Voß, S.: A corridor method-based algorithm for the pre-marshalling problem. In: Giacobini, M. (ed.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 788–797. Springer, Heidelberg (2009b).
  18. Caserta, M., Schwarze, S., Voß, S.: A new binary description of the blocks relocation problem and benefits in a look ahead heuristic. In: Cotta, C., Cowling, P. (eds.) EvoCOP 2009. LNCS, vol. 5482, pp. 37–48. Springer, Heidelberg (2009). Scholar
  19. Caserta, M., Schwarze, S., Voß, S.: Container rehandling at maritime container terminals. In: Bóse, J.W. (ed.) Handbook of Terminal Planning. Operations Research/Computer Science Interfaces Series, vol. 49, pp. 247–269. Springer, New York (2011a).
  20. Caserta, M., Voß, S., Sniedovich, M.: Applying the corridor method to a blocks relocation problem. OR Spectrum, 33(4), 915–929 (2011b)Google Scholar
  21. Caserta, M., Schwarze, S., Voß, S.: A mathematical formulation and complexity considerations for the blocks relocation problem. Eur. J. Oper. Res. 219(1), 96–104 (2012)MathSciNetCrossRefGoogle Scholar
  22. Chen, L., Lu, Z.: The storage location assignment problem for outbound containers in a maritime terminal. Int. J. Prod. Econ. 135(1), 73–80 (2012)CrossRefGoogle Scholar
  23. Choe, R., Park, T., Oh, M.S., Kang, J., Ryu, K.R.: Generating a rehandling-free intra-block remarshaling plan for an automated container yard. J. Intell. Manuf. 22(2), 201–217 (2011)CrossRefGoogle Scholar
  24. Choi, H.R., Kim, H.S., Park, B.J., Park, N.K., Lee, S.W.: An ERP approach for container terminal operating systems. Marit. Policy Manage. 30(3), 197–210 (2003)CrossRefGoogle Scholar
  25. Covic, F.: Re-marshalling in automated container yards with terminal appointment systems. Flex. Serv. Manuf. J. 29(3–4), 433–503 (2017)CrossRefGoogle Scholar
  26. Covic, F.: Container Handling in Automated Yard Blocks Based on Time Information. Ph.D thesis, University of Hamburg (2018)Google Scholar
  27. Davis, P.: Container terminal reservation systems. In: 3rd Annual METRANS National Urban Freight Conference, Long Beach, CA (2009)Google Scholar
  28. Dekker, R., Voogd, P., van Asperen, E.: Advanced methods for container stacking. In: Kim, K.H., Günther, H.-O. (eds.) Container Terminals and Cargo Systems, pp. 131–154. Springer, Heidelberg (2007). Scholar
  29. Dragović, B., Tzannatos, E., Park, N.K.: Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool. Flex. Serv. Manuf. J. 29(1), 4–34 (2017)CrossRefGoogle Scholar
  30. Duinkerken, M.B., Evers, J.J.M., Ottjes, J.A.: A simulation model for integrating quay transport and stacking policies on automated container terminals. In: Proceedings of the 15th European Simulation Multiconference, pp. 909–916, Prague (2001)Google Scholar
  31. Expósito-Izquierdo, C., Melián-Batista, B., Moreno-Vega, M.: Pre-marshalling problem: heuristic solution method and instances generator. Expert Syst. Appl. 39(9), 8337–8349 (2012)CrossRefGoogle Scholar
  32. Galle, V., Barnhart, C., Jaillet, P.: A new binary formulation of the restricted container relocation problem based on a binary encoding of configurations. Eur. J. Oper. Res. 267(2), 467–477 (2018)MathSciNetCrossRefGoogle Scholar
  33. Günther, H.O., Kim, K.H.: Container terminals and terminal operations. OR Spectrum 28(4), 437–445 (2006)CrossRefGoogle Scholar
  34. Han, Y., Lee, L.H., Chew, E.P., Tan, K.C.: A yard storage strategy for minimizing traffic congestion in a marine container transshipment hub. OR Spectrum 30(4), 697–720 (2008)MathSciNetCrossRefGoogle Scholar
  35. Hottung, A., Tierney, K.: A biased random-key genetic algorithm for the container pre-marshalling problem. Comput. Oper. Res. 75, 83–102 (2016)MathSciNetCrossRefGoogle Scholar
  36. Huang, S.H., Lin, T.H.: Heuristic algorithms for container pre-marshalling problems. Comput. Ind. Eng. 62(1), 13–20 (2012)CrossRefGoogle Scholar
  37. Jiang, X., Lee, L.H., Chew, E.P., Han, Y., Tan, K.C.: A container yard storage strategy for improving land utilization and operation efficiency in a transshipment hub port. Eur. J. Oper. Res. 221(1), 64–73 (2012)CrossRefGoogle Scholar
  38. Jin, J.G., Lee, D.H., Cao, J.X.: Storage yard management in maritime container terminals. Transp. Sci. 50(4), 1300–1313 (2016)CrossRefGoogle Scholar
  39. Jovanovic, R., Voß, S.: A chain heuristic for the blocks relocation problem. Comput. Ind. Eng. 75, 79–86 (2014)CrossRefGoogle Scholar
  40. Jovanovic, R., Tuba, M., Voß, S.: A multi-heuristic approach for solving the pre-marshalling problem. Cent. Eur. J. Oper. Res. 25(1), 1–28 (2017)MathSciNetCrossRefGoogle Scholar
  41. Kang, J., Oh, M.-S., Ahn, E.Y., Ryu, K.R., Kim, K.H.: Planning for intra-block remarshalling in a container terminal. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol. 4031, pp. 1211–1220. Springer, Heidelberg (2006a).
  42. Kang, J., Ryu, K.R., Kim, K.H.: Deriving stacking strategies for export containers with uncertain weight information. J. Intell. Manuf. 17(4), 399–410 (2006b)Google Scholar
  43. Kemme, N.: Effects of storage block layout and automated yard crane systems on the performance of seaport container terminals. OR Spectrum 34(3), 563–591 (2012)CrossRefGoogle Scholar
  44. Kemme, N.: Design and Operation of Automated Container Storage Systems. Contributions to Management Science, 1st edn. Physica, Heidelberg (2013). Scholar
  45. Kim, K.H.: Evaluation of the number of rehandles in container yards. Comput. Ind. Eng. 32(4), 701–711 (1997)CrossRefGoogle Scholar
  46. Kim, K.H., Bae, J.W.: Re-marshalling export containers in port container terminals. Comput. Ind. Eng. 35(3–4), 655–658 (1998)CrossRefGoogle Scholar
  47. Kim, K.H., Hong, G.P.: A heuristic rule for relocating blocks. Comput. Oper. Res. 33(4), 940–954 (2006)CrossRefGoogle Scholar
  48. Kim, K.H., Park, K.T.: A note on a dynamic space-allocation method for outbound containers. Eur. J. Oper. Res. 148(1), 92–101 (2003)CrossRefGoogle Scholar
  49. Kim, K.H., Park, Y.M., Ryu, K.R.: Deriving decision rules to locate export containers in container yards. Eur. J. Oper. Res. 124(1), 89–101 (2000)CrossRefGoogle Scholar
  50. Kozan, E., Preston, P.: Mathematical modelling of container transfers and storage locations at seaport terminals. OR Spectrum 28(4), 519–537 (2006)CrossRefGoogle Scholar
  51. Ku, D.: Rehandling problem of pickup containers under truck appointment system. In: Hwang, D., Jung, J.J., Nguyen, N.-T. (eds.) ICCCI 2014. LNCS (LNAI), vol. 8733, pp. 272–281. Springer, Cham (2014). Scholar
  52. Ku, D., Arthanari, T.S.: On the abstraction method for the container relocation problem. Comput. Oper. Res. 68, 110–122 (2016a)Google Scholar
  53. Ku, D., Arthanari, T.S.: Container relocation problem with time windows for container departure. Eur. J. Oper. Res. 252(3), 1031–1039 (2016b)Google Scholar
  54. Lange, A.K., Schwientek, A., Jahn, C.: Reducing truck congestion at ports - classification and trends. In: Jahn, C., Kersten, W., Ringle, C.M. (eds.) Digitalization in Maritime and Sustainable Logistics, pp. 37–58. epubli, Berlin (2017)Google Scholar
  55. Lee, D.H., Jin, J.G., Chen, J.H.: Terminal and yard allocation problem for a container transshipment hub with multiple terminals. Transp. Res. Part E Logistics Transp. Rev. 48(2), 516–528 (2012)CrossRefGoogle Scholar
  56. Lee, Y., Chao, S.L.: A neighborhood search heuristic for pre-marshalling export containers. Eur. J. Oper. Res. 196(2), 468–475 (2009)CrossRefGoogle Scholar
  57. Lee, Y., Hsu, N.Y.: An optimization model for the container pre-marshalling problem. Comput. Oper. Res. 34(11), 3295–3313 (2007)CrossRefGoogle Scholar
  58. Lim, A., Xu, Z.: A critical-shaking neighborhood search for the yard allocation problem. Eur. J. Oper. Res. 174(2), 1247–1259 (2006)CrossRefGoogle Scholar
  59. Luo, J., Wu, Y., Halldorsson, A., Song, X.: Storage and stacking logistics problems in container terminals. OR Insight 24(4), 256–275 (2011)CrossRefGoogle Scholar
  60. Murty, K.G., Liu, J., Wan, Y., Linn, R.: A decision support system for operations in a container terminal. Decis. Support Syst. 39(3), 309–332 (2005a)Google Scholar
  61. Murty, K.G., et al.: Hongkong international terminals gains elastic capacity using a data-intensive decision-support system. Interfaces, 35(1), 61–75 (2005b)Google Scholar
  62. Park, K., Park, T., Ryu, K.R.: Planning for remarshaling in an automated container terminal using cooperative coevolutionary algorithms. In: Proceedings of the 2009 ACM symposium on Applied Computing, SAC 2009, , Honolulu, HI, pp. 1098–1105 (2009)Google Scholar
  63. Park, T., Choe, R., Kim, Y.H., Ryu, K.R.: Dynamic adjustment of container stacking policy in an automated container terminal. Int. J. Prod. Econ. 133(1), 385–392 (2011)CrossRefGoogle Scholar
  64. Petering, M.E.H.: Decision support for yard capacity, fleet composition, truck substitutability, and scalability issues at seaport container terminals. Transp. Res. Part E Logistics Transp. Rev. 47(1), 85–103 (2011)CrossRefGoogle Scholar
  65. Petering, M.E.H., Hussein, M.I.: A new mixed integer program and extended look-ahead heuristic algorithm for the block relocation problem. Eur. J. Oper. Res. 231(1), 120–130 (2013)CrossRefGoogle Scholar
  66. Petering, M.E.H., Wu, Y., Li, W., Goh, M., de Souza, R.: Development and simulation analysis of real-time yard crane control systems for seaport container transshipment terminals. OR Spectrum 31(4), 801–835 (2009)CrossRefGoogle Scholar
  67. Preston, P., Kozan, E.: An approach to determine storage locations of containers at seaport terminals. Comput. Oper. Res. 28(10), 983–995 (2001)CrossRefGoogle Scholar
  68. Rendl, A., Prandtstetter, M.: Constraint models for the container pre-marshaling problem. In: Katsirelos, G., Quimper, C.G. (eds.) 12th International Workshop on Constraint Modelling and Reformulationm ModRef, Uppsala, vol. 13, pp. 44–56 (2013)Google Scholar
  69. Ries, J., González-Ramírez, R.G., Miranda, P.: A fuzzy logic model for the container stacking problem at container terminals. In: González-Ramírez, R.G., Schulte, F., Voß, S., Ceroni Díaz, J.A. (eds.) ICCL 2014. LNCS, vol. 8760, pp. 93–111. Springer, Cham (2014). Scholar
  70. Saurí, S., Martín, E.: Space allocating strategies for improving import yard performance at marine terminals. Transp. Res. Part E Logistics Transp. Rev. 47(6), 1038–1057 (2011)CrossRefGoogle Scholar
  71. Schwarze, S., Voß, S., Zhou, G., Zhou, G.: Scientometric analysis of container terminals and ports literature and interaction with publications on distribution networks. In: Hu, H., Shi, X., Stahlbock, R., Voß, S. (eds.) ICCL 2012. LNCS, vol. 7555, pp. 33–52. Springer, Heidelberg (2012). Scholar
  72. Sharif, O., Huynh, N.: Storage space allocation at marine container terminals using ant-based control. Expert Syst. Appl. 40(6), 2323–2330 (2013)CrossRefGoogle Scholar
  73. Stahlbock, R., Voß, S.: Operations research at container terminals: a literature update. OR Spectrum 30(1), 1–52 (2008a)Google Scholar
  74. Stahlbock, R., Voß, S.: Vehicle routing problems and container terminal operations - an update of research. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges. Operations Research/Computer Science Interfaces, vol. 43, pp. 551–589. Springer, Boston (2008b).
  75. Steenken, D., Voß, S., Stahlbock, R.: Container terminal operation and operations research - a classification and literature review. OR Spectrum 26(1), 3–49 (2004)CrossRefGoogle Scholar
  76. Tanaka, S., Mizuno, F.: An exact algorithm for the unrestricted block relocation problem. Comput. Oper. Res. 95, 12–31 (2018)MathSciNetCrossRefGoogle Scholar
  77. Tanaka, S., Tierney, K.: Solving real-world sized container pre-marshalling problems with an iterative deepening branch-and-bound algorithm. Eur. J. Oper. Res. 264(1), 165–180 (2018)MathSciNetCrossRefGoogle Scholar
  78. Tang, L., Jiang, W., Liu, J., Dong, Y.: Research into container reshuffling and stacking problems in container terminal yards. IIE Trans. 47(7), 751–766 (2015)CrossRefGoogle Scholar
  79. Tierney, K., Voß, S.: Solving the robust container pre-marshalling problem. In: Paias, A., Ruthmair, M., Voß, S. (eds.) ICCL 2016. LNCS, vol. 9855, pp. 131–145. Springer, Cham (2016). Scholar
  80. Tierney, K., Pacino, D., Voß, S.: Solving the pre-marshalling problem to optimality with A* and IDA*. Flex. Serv. Manuf. J. 29(2), 223–259 (2017)CrossRefGoogle Scholar
  81. Ting, C.J., Wu, K.C.: Optimizing container relocation operations at container yards with beam search. Transp. Res. Part E Logistics Transp. Rev. 103, 17–31 (2017)CrossRefGoogle Scholar
  82. Tricoire, F., Scagnetti, J., Beham, A.: New insights on the block relocation problem. Comput. Oper. Res. 89, 127–139 (2018)MathSciNetCrossRefGoogle Scholar
  83. UNCTAD, United Nations Conference on Trade and Development. Review of Maritime Transport 2017. UNCTAD/RMT/2017, United Nations, Geneva (2017)Google Scholar
  84. Ünlüyurt, T., Aydin, C.: Improved rehandling strategies for the container retrieval process. J. Adv. Transp. 46(4), 378–393 (2012)CrossRefGoogle Scholar
  85. Vis, I.F.A., de Koster, R.: Transshipment of containers at a container terminal: an overview. Eur. J. Oper. Res. 147(1), 1–16 (2003)CrossRefGoogle Scholar
  86. Wan, Y., Liu, J., Tsai, P.C.: The assignment of storage locations to containers for a container stack. Naval Res. Logistics 56(8), 699–713 (2009)MathSciNetCrossRefGoogle Scholar
  87. Wang, N., Jin, B., Zhang, Z., Lim, A.: A feasibility-based heuristic for the container pre-marshalling problem. Eur. J. Oper. Res. 256(1), 90–101 (2017)MathSciNetCrossRefGoogle Scholar
  88. WTO, World Trade Organization. Factors shaping the future of world trade. World trade report, WTO Publications, Geneva (2013)Google Scholar
  89. Yu, M., Qi, X.: Storage space allocation models for inbound containers in an automatic container terminal. Eur. J. Oper. Res. 226(1), 32–45 (2013)MathSciNetCrossRefGoogle Scholar
  90. Yu, V.F., Cheng, H.Y., Ting, H.I.: Optimizing re-marshalling operation in export container terminals. In: Proceedings of the Asia Pacific Industrial Engineering & Management Systems Conference, APIEMS 2009, Kitakyushu, pp. 2934–2938 (2009)Google Scholar
  91. Zehendner, E., Feillet, D.: Branch and price approach for the container relocation problem. Int. J. Prod. Res. 52(24), 7159–7176 (2014)CrossRefGoogle Scholar
  92. Zehendner, E., Caserta, M., Feillet, D., Schwarze, S., Voß, S.: An improved mathematical formulation for the blocks relocation problem. Eur. J. Oper. Res. 245(2), 415–422 (2015)MathSciNetCrossRefGoogle Scholar
  93. Zehendner, E., Feillet, D., Jaillet, P.: An algorithm with performance guarantee for the online container relocation problem. Eur. J. Oper. Res. 259(1), 48–62 (2017)MathSciNetCrossRefGoogle Scholar
  94. Zhang, C., Liu, J., Wan, Y., Murty, K.G., Linn, R.L.: Storage space allocation in container terminals. Transp. Res. Part B Methodological 37(10), 883–903 (2003)CrossRefGoogle Scholar
  95. Zhang, C., Chen, W., Shi, L., Zheng, L.: A note on deriving decision rules to locate export containers in container yards. Eur. J. Oper. Res. 205(2), 483–485 (2010)CrossRefGoogle Scholar
  96. Zhao, W., Goodchild, A.V.: The impact of truck arrival information on container terminal rehandling. Transp. Res. Part E Logistics Transp. Rev. 46(3), 327–343 (2010)CrossRefGoogle Scholar
  97. Zhen, L.: Storage allocation in transshipment hubs under uncertainties. Int. J. Prod. Res. 52(1), 72–88 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute for Operations Research, HBS Hamburg Business SchoolUniversity of HamburgHamburgGermany

Personalised recommendations