Advertisement

An Effective Structural Iterative Refinement Technique for Solving the Quadratic Assignment Problem

  • Mehrdad AmirghasemiEmail author
  • Reza Zamani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11184)

Abstract

The quadratic assignment problem deals with the arrangement of facilities in plants for minimizing the communication cost among the facilities. This problem is one of the focal problems both in academia and industry, absorbing the attention of researchers for more than five decades. Having a variety of applications, this problem has still no effective exact solution strategy, as the number of possible feasible solutions, even for medium-sized problems, is extremely large. This makes effective heuristics as the only viable solution strategy for this problem. In this paper, a technique is presented which aims at achieving local minimization through refining layouts structurally. For this purpose, the technique uses an efficient linear assignment technique, and enhances layouts based on the feedback provided. The results of extensive computational experiments on different benchmark instances indicate that the procedure is both robust and efficient.

Keywords

Facility location problem Quadratic assignment problem Iterative refinement 

References

  1. 1.
    Ahuja, R., Jha, K., Orlin, J., Sharma, D.: Very large-scale neighborhood search for the quadratic assignment problem. INFORMS J. Comput. 19(4), 646–657 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Anstreicher, K., Brixius, N., Goux, J., Linderoth, J.: Solving large quadratic assignment problems on computational grids. Math. Program. 91(3), 563–588 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Battiti, R., Tecchiolli, G.: Simulated annealing and tabu search in the long run: a comparison on QAP tasks. Comput. Math. Appl. 28(6), 1–8 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baykasoglu, A.: A meta-heuristic algorithm to solve quadratic assignment formulations of cell formation problems without presetting number of cells. J. Intell. Manuf. 15(6), 753–759 (2004)CrossRefGoogle Scholar
  5. 5.
    Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB - a quadratic assignment problem library. J. Glob. Optim. 10(4), 391–403 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Colorni, A., Dorigo, M., Maffioli, F., Maniezzo, V., Righini, G., Trubian, M.: Heuristics from nature for hard combinatorial optimization problems. Int. Trans. Oper. Res. 3(1), 1–21 (1996)CrossRefGoogle Scholar
  7. 7.
    Connolly, D.T.: An improved annealing scheme for the QAP. Eur. J. Oper. Res. 46(1), 93–100 (1990)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Crainic, T.G., Cun, B.L., Roucairol, C.: Parallel branch-and-bound algorithms. In: Zomaya, A.Y., Talbi, E. (eds.) Parallel Combinatorial Optimization Chap. 1, pp. 1–28. Wiley, Hoboken (2006).  https://doi.org/10.1002/9780470053928.ch1CrossRefGoogle Scholar
  9. 9.
    Demirel, N., Toksar, M.: Optimization of the quadratic assignment problem using an ant colony algorithm. Appl. Math. Comput. 183(1), 427–435 (2006)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Drezner, Z.: Heuristic algorithms for the solution of the quadratic assignment problem. J. Appl. Math. Decis. Sci. 6, 163–173 (2002)CrossRefGoogle Scholar
  11. 11.
    Drezner, Z.: Compounded genetic algorithms for the quadratic assignment problem. Oper. Res. Lett. 33(5), 475–480 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Drezner, Z.: A new genetic algorithm for the quadratic assignment problem. INFORMS J. Comput. 15(3), 320–330 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Drezner, Z.: Extensive experiments with hybrid genetic algorithms for the solution of the quadratic assignment problem. Comput. Oper. Res. 35(3), 717–736 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gambardella, L., Taillard, E., Dorigo, M.: Ant colonies for the quadratic assignment problem. J. Oper. Res. Soc. 50(2), 167–176 (1999)CrossRefGoogle Scholar
  15. 15.
    James, T., Rego, C., Glover, F.: Multistart Tabu search and diversification strategies for the quadratic assignment problem. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 39(3), 579–596 (2009)CrossRefGoogle Scholar
  16. 16.
    Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. SIAM (2003)Google Scholar
  17. 17.
    Koopmans, T., Beckmann, M.: Assignment problems and the location of economic activities. Econometrica: J. Econometr. Soc. 25(1), 53–76 (1957)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kuhn, H.: The Hungarian method for the assignment problem. Naval Res. Logist. 2, 83–97 (1952)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lee, Y., Orlin, J.: Quickmatch: a very fast algorithm for the assignment problem. Report, Sloan School of Management, Massachusetts Institute of Technology (Report number: WP# 3547–93) (1993)Google Scholar
  20. 20.
    Loiola, E.M., De Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. Eur. J. Oper. Res. 176(2), 657–690 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Maniezzo, V., Colorni, A.: The ant system applied to the quadratic assignment problem. IEEE Trans. Knowl. Data Eng. 11(5), 769–778 (1999)CrossRefGoogle Scholar
  22. 22.
    Matai, R., Singh, S., Mittal, M.: A non-greedy systematic neighbourhood search heuristic for solving facility layout problem. Int. J. Adv. Manuf. Technol. 68, 1665–1675 (2013)CrossRefGoogle Scholar
  23. 23.
    Mavridou, T., Pardalos, P.: Simulated annealing and genetic algorithms for the facility layout problem: a survey. Comput. Optim. Appl. 7(1), 111–126 (1997)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Misevicius, A.: A tabu search algorithm for the quadratic assignment problem. Comput. Optim. Appl. 30(1), 95–111 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Oliveira, C.A.S., Pardalos, P.M., Resende, M.G.C.: GRASP with path-relinking for the quadratic assignment problem. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 356–368. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24838-5_27CrossRefGoogle Scholar
  26. 26.
    Rego, C., James, T., Glover, F.: An ejection chain algorithm for the quadratic assignment problem. Networks 56(3), 188–206 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sahni, S., Gonzalez, T.: P-complete approximation problems. J. ACM (JACM) 23(3), 555–565 (1976)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Silva, R., Resende, M., Pardalos, P., Mateus, G., De Tomi, G.: Grasp with path-relinking for facility layout. In: Goldengorin, B., Kalyagin, V., Pardalos, P. (eds.) Models, Algorithms, and Technologies for Network Analysis, vol. 59, pp. 175–190. Springer, New York (2013).  https://doi.org/10.1007/978-1-4614-8588-9_11CrossRefzbMATHGoogle Scholar
  29. 29.
    Solimanpur, M., Vrat, P., Shankar, R.: Ant colony optimization algorithm to the inter-cell layout problem in cellular manufacturing. Eur. J. Oper. Res. 157(3), 592–606 (2004)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Taillard, E.: Robust taboo search for the quadratic assignment problem. Parallel Comput. 17(4), 443–455 (1991)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Taillard, E.: FANT: fast ant system. Technical report, Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale (1998)Google Scholar
  32. 32.
    Talbi, E., Roux, O., Fonlupt, C., Robillard, D.: Parallel ant colonies for the quadratic assignment problem. Future Gener. Comput. Syst. 17(4), 441–449 (2001)CrossRefGoogle Scholar
  33. 33.
    Voß, S.: Solving quadratic assignment problems using the reverse elimination method. In: Nash, S.G., Sofer, A., Stewart, W.R., Wasil, E.A. (eds.) The Impact of Emerging Technologies on Computer Science and Operations Research, pp. 281–296. Kluwer, Dordrecht (1995).  https://doi.org/10.1007/978-1-4615-2223-2_14CrossRefGoogle Scholar
  34. 34.
    Votaw, D.F., Orden, A.: The personnel assignment problem. In: Symposium on Linear Inequalities and Programming, pp. 155–163 (1952)Google Scholar
  35. 35.
    Zhang, H., Beltran-Royo, C., Constantino, M.: Effective formulation reductions for the quadratic assignment problem. Comput. Oper. Res. 37(11), 2007–2016 (2010)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhang, H., Beltran-Royo, C., Ma, L.: Solving the quadratic assignment problem by means of general purpose mixed integer linear programming solvers. Ann. Oper. Res. 207, 261–278 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.SMART Infrastructure Facility, Faculty of Engineering and Information SciencesUniversity of WollongongWollongong, NSWAustralia
  2. 2.School of Computing and Information Technology, Faculty of Engineering and Information SciencesUniversity of WollongongWollongongAustralia

Personalised recommendations