Advertisement

Improved Fully Polynomial Approximation Schemes for the Maximum Lateness Minimization on a Single Machine with a Fixed Operator or Machine Non-Availability Interval

  • Imed KacemEmail author
  • Hans Kellerer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11184)

Abstract

In this paper we consider the single machine scheduling problem with one non-availability interval to minimize the maximum lateness where jobs have positive tails. Two cases are considered. In the first one, the non-availability interval is due to the machine maintenance. In the second case, the non-availibility interval is related to the operator who is organizing the execution of jobs on the machine. The contribution of this paper consists in an improved FPTAS for the maintenance non-availability interval case and its extension to the operator non-availability interval case. The two FPTASs are strongly polynomial and outperform the recent ones by Kacem, Kellerer and Seifaddini presented in [12].

Keywords

Scheduling Approximation Schemes FPTAS Maximum lateness minimization Single machine Non-availability interval Dynamic programming 

References

  1. 1.
    Brauner, N., et al.: Operator non-availability periods. 4OR: Q. J. Oper. Res. 7, 239–253 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Carlier, J.: The one-machine sequencing problem. Eur. J. Oper. Res. 11, 42–47 (1982)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, Y., Zhang, A., Tan, Z.: Complexity and approximation of single machine scheduling with an operator non-availability period to minimize total completion time. Inf. Sci. 251, 150–163 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dessouky, M.I., Margenthaler, C.R.: The one-machine sequencing problem with early starts and due dates. AIIE Trans. 4(3), 214–222 (1972)CrossRefGoogle Scholar
  5. 5.
    Gens, G.V., Levner, E.V.: Fast approximation algorithms for job sequencing with deadlines. Discret. Appl. Math. 3, 313–318 (1981)CrossRefGoogle Scholar
  6. 6.
    He, Y., Zhong, W., Gu, H.: Improved algorithms for two single machine scheduling problems. Theor. Comput. Sci. 363, 257–265 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ibarra, O., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22, 463–468 (1975)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kacem, I.: Approximation algorithms for the makespan minimization with positive tails on a single machine with a fixed non-availability interval. J. Comb. Optim. 17(2), 117–133 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kacem, I., Kellerer, H.: Approximation algorithms for no idle time scheduling on a single machine with release times and delivery times. Discret. Appl. Math. 164(1), 154–160 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kacem, I., Kellerer, H.: Approximation schemes for minimizing the maximum lateness on a single machine with release times under non-availability or deadline constraints. Algorithmica (2018)  https://doi.org/10.1007/s00453-018-0417-6MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kacem, I., Kellerer, H.: Semi-online scheduling on a single machine with unexpected breakdown. Theor. Comput. Sci. 646, 40–48 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kacem, I., Kellerer, H., Seifaddini, M.: Efficient approximation schemes for the maximum lateness minimization on a single machine with a fixed operator or machine non-availability interval. J. Comb. Optim. 32, 970–981 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kacem, I., Sahnoune, M., Schmidt, G.: Strongly fully polynomial time approximation scheme for the weighted completion time minimisation problem on two-parallel capacitated machines. RAIRO - Oper. Res. 51, 1177–1188 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kubzin, M.A., Strusevich, V.A.: Planning machine maintenance in two machine shop scheduling. Oper. Res. 54, 789–800 (2006)CrossRefGoogle Scholar
  15. 15.
    Lee, C.Y.: Machine scheduling with an availability constraints. J. Glob. Optim. 9, 363–384 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Qi, X.: A note on worst-case performance of heuristics for maintenance scheduling problems. Discret. Appl. Math. 155, 416–422 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Qi, X., Chen, T., Tu, F.: Scheduling the maintenance on a single machine. J. Oper. Res. Soc. 50, 1071–1078 (1999)CrossRefGoogle Scholar
  18. 18.
    Rapine, C., Brauner, N., Finke, G., Lebacque, V.: Single machine scheduling with small operator-non-availability periods. J. Sched. 15, 127–139 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Schmidt, G.: Scheduling with limited machine availability. Eur. J. Oper. Res. 121, 1–15 (2000)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sahni, S.: Algorithms for scheduling independent tasks. J. ACM 23, 116–127 (1976)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Yuan, J.J., Shi, L., Ou, J.W.: Single machine scheduling with forbidden intervals and job delivery times. Asia-Pac. J. Oper. Res. 25(3), 317–325 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Université de Lorraine, LCOMS EA 7306MetzFrance
  2. 2.Institut für Statistik und Operations ResearchUniversity of GrazGrazAustria

Personalised recommendations