Advertisement

The Standard Capacity Model: Towards a Polyhedron Representation of Container Vessel Capacity

  • Rune Møller JensenEmail author
  • Mai Lise Ajspur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11184)

Abstract

Container liner shipping is about matching spare capacity to cargo in need of transport. This can be realized using cargo flow networks, where edges are associated with vessel capacity. It is hard, though, to calculate free capacity of container vessels unless full-blown non-linear stowage optimization models are applied. This may cause such flow network optimization to be intractable. To address this challenge, we introduce the Standard Capacity Model (SCM). SCMs are succinct linear capacity models derived from vessel data that can be integrated in higher order optimization models as mentioned above. In this paper, we introduce the hydrostatic core of the SCM. Our results show that it can predict key parameters like draft, trim, and stress forces accurately and thus can model capacity reductions due to these factors.

Keywords

Container vessel capacity Stowage planning Linear modelling 

References

  1. 1.
    Ambrosino, D., Paolucci, M., Sciomachen, A.: A MIP heuristic for multi poty stowage planning. Transp. Res. Procedia 10, 725–734 (2015)CrossRefGoogle Scholar
  2. 2.
    Avriel, M., Penn, M., Shpirer, N.: Container ship stowage problem: complexity and connection to the coloring of circle graphs. Discrete Appl. Math. 103, 271–279 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Delgado, A.: Models and algorithms for container vessel stowage optimization. Ph.D. thesis, IT University of Copenhagen (2013)Google Scholar
  4. 4.
    Economist: The humble hero, May 2013Google Scholar
  5. 5.
    Economist: Thinking outside the box, April 2018Google Scholar
  6. 6.
    Interschalt: MACS3 loading computer. http://navis.com
  7. 7.
    Kang, J., Kim, Y.: Stowage planning in maritime container transportation. J. Oper. Res. Soc. 53(4), 415–426 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Li, F., Tian, C., Cao, R., Ding, W.: An integer linear programming for container stowage problem. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008. LNCS, vol. 5101, pp. 853–862. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69384-0_90CrossRefGoogle Scholar
  9. 9.
    Optivation: Mathematical cargomix optimization model for the K-class (2013)Google Scholar
  10. 10.
    Pacino, D., Delgado, A., Jensen, R.M., Bebbington, T.: Fast generation of near-optimal plans for eco-efficient stowage of large container vessels. In: Böse, J.W., Hu, H., Jahn, C., Shi, X., Stahlbock, R., Voß, S. (eds.) ICCL 2011. LNCS, vol. 6971, pp. 286–301. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24264-9_22CrossRefGoogle Scholar
  11. 11.
    Pacino, D., Delgado, A., Jensen, R., Bebbington, T.: An accurate model for seaworthy container vessel stowage planning with ballast tanks, pp. 17–32 (2012)Google Scholar
  12. 12.
    Parreño, F., Pacino, D., Alvarez-Valdes, R.: A GRASP algorithm for the container stowage slot planning problem. Transp. Res. Part E Logist. Transp. Rev. 94, 141–157 (2016)CrossRefGoogle Scholar
  13. 13.
    Tierney, K., Pacino, D., Jensen, R.: On the complexity of container stowage planning problems. Discret. Appl. Math. 169, 225–230 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    UNCTAD: Review of maritime transport 2016. United nations conference on trade and development UNCTAD (2016)Google Scholar
  15. 15.
    Wilson, I., Roach, P.: Principles of combinatorial optimization applied to container-ship stowage planning. J. Heuristics 5, 403–418 (1999)CrossRefGoogle Scholar
  16. 16.
    Zurheide, S., Fischer, K.: A revenue management slot allocation model for liner shipping networks. Marit. Econ. Logist. 14(3), 334–361 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.IT UniversityCopenhagen SDenmark

Personalised recommendations