Advertisement

Paediatric Bone Age Assessment Using Deep Convolutional Neural Networks

  • Vladimir I. Iglovikov
  • Alexander Rakhlin
  • Alexandr A. KalininEmail author
  • Alexey A. Shvets
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11045)

Abstract

Skeletal bone age assessment is a common clinical practice to diagnose endocrine and metabolic disorders in child development. In this paper, we describe a deep learning approach to the problem of bone age assessment using data from the 2017 Pediatric Bone Age Challenge organized by the Radiological Society of North America. This dataset consists of 12,600 radiological images. Each radiograph in the dataset is an image of a left hand labeled with bone age and sex of a patient. Our approach introduces a comprehensive preprocessing protocol based on the positive mining technique. We use images of whole hands as well as specific hand parts for both training and prediction. This allows us to measure the importance of specific hand bones for automated bone age analysis. We further evaluate the performance of the suggested methods in the context of skeletal development stages. Our approach outperforms other common methods for bone age assessment.

Keywords

Medical imaging Computer-aided diagnosis (CAD) Computer vision Image recognition Deep learning 

References

  1. 1.
    Ching, T., et al.: Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15(141) (2018)Google Scholar
  2. 2.
    Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289 (2015)
  3. 3.
    Gilsanz, V., Ratib, O.: Hand Bone Age: A Digital Atlas of Skeletal Maturity. Springer Science & Business Media, Heidelberg (2005).  https://doi.org/10.1007/b138568CrossRefGoogle Scholar
  4. 4.
    Greulich, W.W., Pyle, S.I.: Radiographic atlas of skeletal development of the hand and wrist. Am. J. Med. Sci. 238(3), 393 (1959)CrossRefGoogle Scholar
  5. 5.
    Iglovikov, V., Shvets, A.: Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image segmentation. arXiv preprint arXiv:1801.05746 (2018)
  6. 6.
    Kalinin, A.A., et al.: Deep learning in pharmacogenomics: from gene regulation to patient stratification. Pharmacogenomics 19(7), 629–650 (2018)CrossRefGoogle Scholar
  7. 7.
    Larson, D.B., Chen, M.C., Lungren, M.P., Halabi, S.S., Stence, N.V., Langlotz, C.P.: Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology, 170236 (2017)Google Scholar
  8. 8.
    Lee, H., et al.: Fully automated deep learning system for bone age assessment. J. Digit. Imaging, 1–15 (2017)Google Scholar
  9. 9.
    Rakhlin, A.: Diabetic retinopathy detection through integration of deep learning classification framework. In: bioRxiv, p. 225508 (2017)Google Scholar
  10. 10.
    Rakhlin, A., Shvets, A., Iglovikov, V., Kalinin, A.A.: Deep convolutional neural networks for breast cancer histology image analysis. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 737–744. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93000-8_83CrossRefGoogle Scholar
  11. 11.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  12. 12.
    RSNA Pediatric Bone Age Challenge. http://rsnachallenges.cloudapp.net/competitions/4 (2017). Accessed 16 July 2017
  13. 13.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  14. 14.
    Spampinato, C., Palazzo, S., Giordano, D., Aldinucci, M., Leonardi, R.: Deep learning for automated skeletal bone age assessment in X-ray images. Med. Image Anal. 36, 41–51 (2017)CrossRefGoogle Scholar
  15. 15.
    Supervisely. https://supervise.ly/. Accessed 16 July 2017
  16. 16.
    Tanner, J., Whitehouse, R., Cameron, N., Marshall, W., Healy, M., Goldstein, H.: Assessment of Skeletal Maturity and Prediction of Adult Height (TW2 Method). Academic Press, London (1983)Google Scholar
  17. 17.
    Thodberg, H.H., Kreiborg, S., Juul, A., Pedersen, K.D.: The BoneXpert method for automated determination of skeletal maturity. IEEE Trans. Med. Imaging 28(1), 52–66 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Vladimir I. Iglovikov
    • 1
  • Alexander Rakhlin
    • 2
  • Alexandr A. Kalinin
    • 3
    Email author
  • Alexey A. Shvets
    • 4
  1. 1.ODS.aiSan FranciscoUSA
  2. 2.Neuromation OUTallinnEstonia
  3. 3.University of MichiganAnn ArborUSA
  4. 4.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations