Advertisement

Pulmonary Manifestations of Complement Deficiencies

  • Anete Sevciovic Grumach
  • Kathleen E. Sullivan
Chapter

Abstract

The complement system has an important role in host defense against infections, removal of apoptotic cells and immune complexes, and modulating the adaptive immune response. Deficiencies of the proteins or regulators of the complement system contribute to infections affecting the respiratory tract. The main etiological agents associated with complement deficiencies are encapsulated bacteria as Streptococcus, Haemophilus, and Neisseria, related to the role of this system to bacteria opsonization and clearance. MBL deficiency contributes to infectious risk in some diseases like cystic fibrosis and common variable immunodeficiency (CVID), whose pulmonary impairment is relevant. Many complement deficiencies do not have a severe phenotype; thus, there is restricted information about long-term effects and specific infections such as pulmonary infections. Immunization against encapsulated bacteria is recommended for all these defects.

Keywords

Complement system Deficiency C1q C4 C2 C3 MBL Ficolin C5–C9 Respiratory infection Pneumonia Hereditary angioedema Factor H Factor I 

References

  1. 1.
    Sullivan KE, Grumach AS. The complement system. In: Middleton’s allergy: principles and practice. 8th ed. Philadelphia: Elsevier Inc; 2017. p. 113–38.Google Scholar
  2. 2.
    Sjoholm AG, Jonsson G, Braconier JH, Sturfelt G, Truedsson L. Complement deficiency and disease: an update. Mol Immunol. 2006;43(1–2):78–85.PubMedCrossRefGoogle Scholar
  3. 3.
    Jonsson G, Truedsson L, Sturfelt G, Oxelius VA, Braconier JH, Sjoholm AG. Hereditary C2 deficiency in Sweden: frequent occurrence of invasive infection, atherosclerosis, and rheumatic disease. Medicine (Baltimore). 2005;84(1):23–34.CrossRefGoogle Scholar
  4. 4.
    Brown JS, Hussell T, Gilliland SM, Holden DW, Paton JC, Ehrenstein MR, et al. The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc Natl Acad Sci U S A. 2002;99(26):16969–74.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Gross GN, Rehm SR, Pierce AK. The effect of complement depletion on lung clearance of bacteria. J Clin Invest. 1978;62(2):373–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Wessels MR, Butko P, Ma M, Warren HB, Lage AL, Carroll MC. Studies of group B streptococcal infection in mice deficient in complement component C3 or C4 demonstrate an essential role for complement in both innate and acquired immunity. Proc Natl Acad Sci. 1995;92(25):11490–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Yuste J, Ali S, Sriskandan S, Hyams C, Botto M, Brown JS. Roles of the alternative complement pathway and C1q during innate immunity to Streptococcus pyogenes. J Immunol. 2006;176(10):6112–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Andrade FA, Lidani KCF, Catarino SJ, Messias-Reason IJ. Serine proteases in the lectin pathway of the complement system. In: Chakraborti S, Dhalla N, editors. Proteases in physiology and pathology. Singapore: Springer; 2017.Google Scholar
  9. 9.
    Endo Y, Matsushita M, Fujita T. Role of ficolin in innate immunity and its molecular basis. Immunobiology. 2007;212(4–5):371–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Beltrame MH, Boldt AB, Catarino SJ, Mendes HC, Boschmann SE, Goeldner I, et al. MBL-associated serine proteases (MASPs) and infectious diseases. Mol Immunol. 2015;67(1):85–100.PubMedCrossRefGoogle Scholar
  11. 11.
    Duus K, Thielens NM, Lacroix M, Tacnet P, Frachet P, Holmskov U, et al. CD91 interacts with mannan-binding lectin (MBL) through the MBL-associated serine protease-binding site. FEBS J. 2010;277(23):4956–64.PubMedCrossRefGoogle Scholar
  12. 12.
    Neth O, Jack DL, Dodds AW, Holzel H, Klein NJ, Turner MW. Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect Immun. 2000;68(2):688–93.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Walport MJ. Complement. Second of two parts. N Engl J Med. 2001;344:1140–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Ram S, Lewis LA, Rice PA. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev. 2010;23(4):740–80.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol. 2009;9(10):729.PubMedCrossRefGoogle Scholar
  16. 16.
    Pickering MC, Walport MJ. Links between complement abnormalities and systemic lupus erythematosus. Rheumatology (Oxford, England). 2000;39(2):133–41.CrossRefGoogle Scholar
  17. 17.
    Macedo AC, Isaac L. Systemic lupus erythematosus and deficiencies of early components of the complement classical pathway. Front Immunol. 2016;7:55.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ross SC, Densen P. Complement deficiency states and infection: epidemiology, pathogenesis and consequences of neisserial and other infections in an immune deficiency. Medicine (Baltimore). 1984;63(5):243–73.CrossRefGoogle Scholar
  19. 19.
    Mascart-Lemone F, Hauptmann G, Goetz J, Duchateau J, Delespesse G, Vray B, et al. Genetic deficiency of C4 presenting with recurrent infections and a SLE-like disease. Genetic and immunologic studies. Am J Med. 1983;75(2):295–304.PubMedCrossRefGoogle Scholar
  20. 20.
    Carroll MC, Campbell RD, Bentley DR, Porter RR. A molecular map of the human major histocompatibility complex class III region linking complement genes C4, C2 and factor B. Nature. 1984;307(5948):237–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Carroll MC, Fathallah DM, Bergamaschini L, Alicot EM, Isenman DE. Substitution of a single amino acid (aspartic acid for histidine) converts the functional activity of human complement C4B to C4A. Proc Natl Acad Sci U S A. 1990;87(17):6868–72.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Samano ES, Ribeiro Lde M, Gorescu RG, Rocha KC, Grumach AS. Involvement of C4 allotypes in the pathogenesis of human diseases. Rev Hosp Clin. 2004;59(3):138–44.CrossRefGoogle Scholar
  23. 23.
    Kainulainen L, Peltola V, Seppanen M, Viander M, He Q, Lokki ML, et al. C4A deficiency in children and adolescents with recurrent respiratory infections. Hum Immunol. 2012;73(5):498–501.PubMedCrossRefGoogle Scholar
  24. 24.
    Bishof NA, Welch TR, Beischel LS. C4B deficiency: a risk factor for bacteremia with encapsulated organisms. J Infect Dis. 1990;162(1):248–50.PubMedCrossRefGoogle Scholar
  25. 25.
    Rowe PC, McLean RH, Wood RA, Leggiadro RJ, Winkelstein JA. Association of homozygous C4B deficiency with bacterial meningitis. J Infect Dis. 1989;160(3):448–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Cates KL, Densen P, Lockman JC, Levine RP. C4B deficiency is not associated with meningitis or bacteremia with encapsulated bacteria. J Infect Dis. 1992;165(5):942–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Fasano MB, Densen P, McLean RH, Winkelstein JA. Prevalence of homozygous C4B deficiency in patients with deficiencies of terminal complement components and meningococcemia. J Infect Dis. 1990;162(5):1220–1.PubMedCrossRefGoogle Scholar
  28. 28.
    Ekdahl K, Truedsson L, Sjoholm AG, Braconier JH. Complement analysis in adult patients with a history of bacteremic pneumococcal infections or recurrent pneumonia. Scand J Infect Dis. 1995;27(2):111–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Alves Pedroso M, Boldt A, Pereira-Ferrari L, Steffensen R, Strauss E, Jensenius JC, et al. Mannan-binding lectin MBL2 gene polymorphism in chronic hepatitis C: association with the severity of liver fibrosis and response to interferon therapy. Clin Exp Immunol. 2008;152(2):258–64.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Truedsson L, Bengtsson AA, Sturfelt G. Complement deficiencies and systemic lupus erythematosus. Autoimmunity. 2007;40(8):560–6.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Figueroa JE, Densen P. Infectious diseases associated with complement deficiencies. Clin Microbiol Rev. 1991;4(3):359–95.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Alper CA, Xu J, Cosmopoulos K, Dolinski B, Stein R, Uko G, et al. Immunoglobulin deficiencies and susceptibility to infection among homozygotes and heterozygotes for C2 deficiency. J Clin Immunol. 2003;23(4):297–305.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Eisen DP. Mannose-binding lectin deficiency and respiratory tract infection. J Innate Immun. 2010;2(2):114–22.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ferraroni NR, Segat L, Guimaraes RL, Brandao LA, Crovella S, Constantino-Silva RN, et al. Mannose-binding lectin and MBL-associated serine protease-2 gene polymorphisms in a Brazilian population from Rio de Janeiro. Int J Immunogenet. 2012;39(1):32–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Madsen HO, Garred P, Thiel S, Kurtzhals JA, Lamm LU, Ryder LP, et al. Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J Immunol (Baltimore, MD: 1950). 1995;155(6):3013–20.Google Scholar
  36. 36.
    Turner M, Hamvas R. Mannose-binding lectin: structure, function, genetics and disease associations. Rev Immunogenet. 2000;2(3):305–22.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Garred P. Mannose-binding lectin genetics: from A to Z. Biochem Soc Trans. 2008;36(Pt 6):1461–6.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Turner MW. The role of mannose-binding lectin in health and disease. Mol Immunol. 2003;40(7):423–9.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Dahl M, Tybjaerg-Hansen A, Schnohr P, Nordestgaard BG. A population-based study of morbidity and mortality in mannose-binding lectin deficiency. J Exp Med. 2004;199(10):1391–9.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Jensenius JC, Jensen PH, McGuire K, Larsen JL, Thiel S. Recombinant mannan-binding lectin (MBL) for therapy. Biochem Soc Trans. 2003;31(Pt 4):763–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Seyfarth J, Garred P, Madsen HO. Extra-hepatic transcription of the human mannose-binding lectin gene (mbl2) and the MBL-associated serine protease 1-3 genes. Mol Immunol. 2006;43(7):962–71.PubMedCrossRefGoogle Scholar
  42. 42.
    Soothill JF, Harvey BA. Defective opsonization. A common immunity deficiency. Arch Dis Child. 1976;51(2):91–9.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Super M, Thiel S, Lu J, Levinsky RJ, Turner MW. Association of low levels of mannan-binding protein with a common defect of opsonisation. Lancet. 1989;334(8674):1236–9.CrossRefGoogle Scholar
  44. 44.
    Sumiya M, Tabona P, Arai T, Summerfield J, Super M, Levinsky R, et al. Molecular basis of opsonic defect in immunodeficient children. Lancet. 1991;337(8757):1569–70.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Eisen DP, Dean MM, Boermeester MA, Fidler KJ, Gordon AC, Kronborg G, et al. Low serum mannose-binding lectin level increases the risk of death due to pneumococcal infection. Clin Infect Dis. 2008;47(4):510–6.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Munoz-Almagro C, Bautista C, Arias MT, Boixeda R, Del Amo E, Borras C, et al. High prevalence of genetically-determined mannose binding lectin deficiency in young children with invasive pneumococcal disease. Clin Microbiol Infect. 2014;20(10):O745–52.PubMedCrossRefGoogle Scholar
  47. 47.
    Garcia-Laorden MI, Sole-Violan J, Rodriguez de Castro F, Aspa J, Briones ML, Garcia-Saavedra A, et al. Mannose-binding lectin and mannose-binding lectin-associated serine protease 2 in susceptibility, severity, and outcome of pneumonia in adults. J Allergy Clin Immunol. 2008;122(2):368–74, 74.e1–2.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kronborg G, Weis N, Madsen HO, Pedersen SS, Wejse C, Nielsen H, et al. Variant mannose-binding lectin alleles are not associated with susceptibility to or outcome of invasive pneumococcal infection in randomly included patients. J Infect Dis. 2002;185(10):1517–20.PubMedCrossRefGoogle Scholar
  49. 49.
    Roy S, Knox K, Segal S, Griffiths D, Moore CE, Welsh KI, et al. MBL genotype and risk of invasive pneumococcal disease: a case-control study. Lancet (London, England). 2002;359(9317):1569–73.CrossRefGoogle Scholar
  50. 50.
    Aittoniemi J, Baer M, Soppi E, Vesikari T, Miettinen A. Mannan binding lectin deficiency and concomitant immunodefects. Arch Dis Child. 1998;78(3):245–8.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Aittoniemi J, Koskinen S, Laippala P, Laine S, Miettinen A. The significance of IgG subclasses and mannan-binding lectin (MBL) for susceptibility to infection in apparently healthy adults with IgA deficiency. Clin Exp Immunol. 1999;116(3):505–8.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Cedzynski M, Szemraj J, Swierzko AS, Bak-Romaniszyn L, Banasik M, Zeman K, et al. Mannan-binding lectin insufficiency in children with recurrent infections of the respiratory system. Clin Exp Immunol. 2004;136(2):304–11.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Litzman J, Freiberger T, Grimbacher B, Gathmann B, Salzer U, Pavlik T, et al. Mannose-binding lectin gene polymorphic variants predispose to the development of bronchopulmonary complications but have no influence on other clinical and laboratory symptoms or signs of common variable immunodeficiency. Clin Exp Immunol. 2008;153(3):324–30.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Mullighan CG, Marshall SE, Welsh KI. Mannose binding lectin polymorphisms are associated with early age of disease onset and autoimmunity in common variable immunodeficiency. Scand J Immunol. 2000;51(2):111–22.PubMedCrossRefGoogle Scholar
  55. 55.
    Watkins C, Saleh H, Song E, Bala Jaishankar G, Chi S, Misran N, et al. Concomitant gene mutations of MBL and CYBB in chronic granulomatous disease: implications for host defense. Inflamm Allergy Drug Targets (Form Curr Drug Targets Inflamm Allergy). 2012;11(3):222–6.CrossRefGoogle Scholar
  56. 56.
    Garred P, Harboe M, Oettinger T, Koch C, Svejgaard A. Dual role of mannan-binding protein in infections: another case of heterosis? Eur J Immunogenet. 1994;21(2):125–31.PubMedCrossRefGoogle Scholar
  57. 57.
    Thye T, Niemann S, Walter K, Homolka S, Intemann CD, Chinbuah MA, et al. Variant G57E of mannose binding lectin associated with protection against tuberculosis caused by Mycobacterium africanum but not by M. tuberculosis. PloS One. 2011;6(6):e20908.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Sutterwala FS, Noel GJ, Clynes R, Mosser DM. Selective suppression of interleukin-12 induction after macrophage receptor ligation. J Exp Med. 1997;185(11):1977–85.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    da Cruz HL, da Silva RC, Segat L, de Carvalho MS, Brandao LA, Guimaraes RL, et al. MBL2 gene polymorphisms and susceptibility to tuberculosis in a northeastern Brazilian population. Infect Genet Evol: J Mol Epidemiol Evol Genet Infect Dis. 2013;19:323–9.CrossRefGoogle Scholar
  60. 60.
    Lambourne J, Agranoff D, Herbrecht R, Troke PF, Buchbinder A, Willis F, et al. Association of mannose-binding lectin deficiency with acute invasive aspergillosis in immunocompromised patients. Clin Infect Dis. 2009;49(10):1486–91.PubMedCrossRefGoogle Scholar
  61. 61.
    Crosdale DJ, Poulton KV, Ollier WE, Thomson W, Denning DW. Mannose-binding lectin gene polymorphisms as a susceptibility factor for chronic necrotizing pulmonary aspergillosis. J Infect Dis. 2001;184(5):653–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Madan T, Kaur S, Saxena S, Singh M, Kishore U, Thiel S, et al. Role of collectins in innate immunity against aspergillosis. Med Mycol. 2005;43(Suppl 1):S155–63.PubMedCrossRefGoogle Scholar
  63. 63.
    Dorfman R, Sandford A, Taylor C, Huang B, Frangolias D, Wang Y, et al. Complex two-gene modulation of lung disease severity in children with cystic fibrosis. J Clin Invest. 2008;118(3):1040–9.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Garred P, Pressler T, Madsen HO, Frederiksen B, Svejgaard A, Hoiby N, et al. Association of mannose-binding lectin gene heterogeneity with severity of lung disease and survival in cystic fibrosis. J Clin Invest. 1999;104(4):431–7.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Yarden J, Radojkovic D, De Boeck K, Macek M, Zemkova D, Vavrova V, et al. Polymorphisms in the mannose binding lectin gene affect the cystic fibrosis pulmonary phenotype. J Med Genet. 2004;41(8):629–33.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Carlsson M, Sjoholm AG, Eriksson L, Thiel S, Jensenius JC, Segelmark M, et al. Deficiency of the mannan-binding lectin pathway of complement and poor outcome in cystic fibrosis: bacterial colonization may be decisive for a relationship. Clin Exp Immunol. 2005;139(2):306–13.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Olesen HV, Jensenius JC, Steffensen R, Thiel S, Schiotz PO. The mannan-binding lectin pathway and lung disease in cystic fibrosis–dysfunction of mannan-binding lectin-associated serine protease 2 (MASP-2) may be a major modifier. Clin Immunol (Orlando, Fla). 2006;121(3):324–31.CrossRefGoogle Scholar
  68. 68.
    Lozano F, Suarez B, Munoz A, Jensenius JC, Mensa J, Vives J, et al. Novel MASP2 variants detected among north African and sub-Saharan individuals. Tissue Antigens. 2005;66(2):131–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Stengaard-Pedersen K, Thiel S, Gadjeva M, Moller-Kristensen M, Sorensen R, Jensen LT, et al. Inherited deficiency of mannan-binding lectin-associated serine protease 2. N Engl J Med. 2003;349(6):554–60.PubMedCrossRefGoogle Scholar
  70. 70.
    Cedzynski M, Atkinson AP, St Swierzko A, MacDonald SL, Szala A, Zeman K, et al. L-ficolin (ficolin-2) insufficiency is associated with combined allergic and infectious respiratory disease in children. Mol Immunol. 2009;47(2–3):415–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Sokolowska A, Szala A, St Swierzko A, Kozinska M, Niemiec T, Blachnio M, et al. Mannan-binding lectin-associated serine protease-2 (MASP-2) deficiency in two patients with pulmonary tuberculosis and one healthy control. Cell Mol Immunol. 2015;12(1):119–21.PubMedCrossRefGoogle Scholar
  72. 72.
    Garcia-Laorden MI, Garcia-Saavedra A, de Castro FR, Violan JS, Rajas O, Blanquer J, et al. Low clinical penetrance of mannose-binding lectin-associated serine protease 2 deficiency. J Allergy Clin Immunol. 2006;118(6):1383–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Bidula S, Sexton DW, Yates M, Abdolrasouli A, Shah A, Wallis R, et al. H-ficolin binds aspergillus fumigatus leading to activation of the lectin complement pathway and modulation of lung epithelial immune responses. Immunology. 2015;146(2):281–91.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Ren Y, Ding Q, Zhang X. Ficolins and infectious diseases. Virol Sin. 2014;29(1):25–32.PubMedCrossRefGoogle Scholar
  75. 75.
    Pan Q, Chen H, Wang F, Jeza VT, Hou W, Zhao Y, et al. L-ficolin binds to the glycoproteins hemagglutinin and neuraminidase and inhibits influenza a virus infection both in vitro and in vivo. J Innate Immun. 2012;4(3):312–24.PubMedCrossRefGoogle Scholar
  76. 76.
    Verma A, White M, Vathipadiekal V, Tripathi S, Mbianda J, Ieong M, et al. Human H-ficolin inhibits replication of seasonal and pandemic influenza a viruses. J Immunol. 2012;189(5):2478–87.PubMedCrossRefGoogle Scholar
  77. 77.
    Aoyagi Y, Adderson EE, Min JG, Matsushita M, Fujita T, Takahashi S, et al. Role of L-ficolin/mannose-binding lectin-associated serine protease complexes in the opsonophagocytosis of type III group B streptococci. J Immunol (Baltimore, MD: 1950). 2005;174(1):418–25.CrossRefGoogle Scholar
  78. 78.
    Chalmers JD, Fleming GB, Rutherford J, Matsushita M, Kilpatrick DC, Hill AT. Serum ficolin-2 in hospitalised patients with community-acquired pneumonia. Inflammation. 2014;37(5):1635–41.PubMedCrossRefGoogle Scholar
  79. 79.
    Kilpatrick DC, Chalmers JD, MacDonald SL, Murray M, Mohammed A, Hart SP, et al. Stable bronchiectasis is associated with low serum L-ficolin concentrations. Clin Respir J. 2009;3(1):29–33.PubMedCrossRefGoogle Scholar
  80. 80.
    Munthe-Fog L, Hummelshoj T, Honore C, Madsen HO, Permin H, Garred P. Immunodeficiency associated with FCN3 mutation and ficolin-3 deficiency. N Engl J Med. 2009;360(25):2637–44.PubMedCrossRefGoogle Scholar
  81. 81.
    Matsushita M. Ficolins: complement-activating lectins involved in innate immunity. J Innate Immun. 2010;2(1):24–32.PubMedCrossRefGoogle Scholar
  82. 82.
    Luo F, Sun X, Wang Y, Wang Q, Wu Y, Pan Q, et al. Ficolin-2 defends against virulent mycobacteria tuberculosis infection in vivo, and its insufficiency is associated with infection in humans. PLoS One. 2013;8(9):e73859.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ma YJ, Skjoedt MO, Garred P. Collectin-11/MASP complex formation triggers activation of the lectin complement pathway–the fifth lectin pathway initiation complex. J Innate Immun. 2013;5(3):242–50.PubMedCrossRefGoogle Scholar
  84. 84.
    Selman L, Hansen S. Structure and function of collectin liver 1 (CL-L1) and collectin 11 (CL-11, CL-K1). Immunobiology. 2012;217(9):851–63.PubMedCrossRefGoogle Scholar
  85. 85.
    Ali YM, Lynch NJ, Haleem KS, Fujita T, Endo Y, Hansen S, et al. The lectin pathway of complement activation is a critical component of the innate immune response to pneumococcal infection. PLoS Pathog. 2012;8(7):e1002793.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Rooryck C, Diaz-Font A, Osborn DP, Chabchoub E, Hernandez-Hernandez V, Shamseldin H, et al. Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome. Nat Genet. 2011;43(3):197–203.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hiemstra PS, Langeler E, Compier B, Keepers Y, Leijh PC, van den Barselaar MT, et al. Complete and partial deficiencies of complement factor D in a Dutch family. J Clin Invest. 1989;84(6):1957–61.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Fijen CA, van den Bogaard R, Schipper M, Mannens M, Schlesinger M, Nordin FG, et al. Properdin deficiency: molecular basis and disease association. Mol Immunol. 1999;36(13–14):863–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Schejbel L, Rosenfeldt V, Marquart H, Valerius NH, Garred P. Properdin deficiency associated with recurrent otitis media and pneumonia, and identification of male carrier with Klinefelter syndrome. Clin Immunol (Orlando, Fla). 2009;131(3):456–62.CrossRefGoogle Scholar
  90. 90.
    Alper CA, Propp RP. Genetic polymorphism of the third component of human complement (C′3). J Clin Invest. 1968;47(9):2181–91.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Grumach AS, Vilela MM, Gonzalez CH, Starobinas N, Pereira AB, Dias-da-Silva W, et al. Inherited C3 deficiency of the complement system. Brazilian J Med Biol Res = Rev Brasileira de pesquisas medicas e biologicas. 1988;21(2):247–57.Google Scholar
  92. 92.
    Grumach AS, Kirschfink M. Are complement deficiencies really rare? Overview on prevalence, clinical importance and modern diagnostic approach. Mol Immunol. 2014;61(2):110–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Hazlewood MA, Kumararatne DS, Webster AD, Goodall M, Bird P, Daha M. An association between homozygous C3 deficiency and low levels of anti-pneumococcal capsular polysaccharide antibodies. Clin Exp Immunol. 1992;87(3):404–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ghannam A, Pernollet M, Fauquert JL, Monnier N, Ponard D, Villiers MB, et al. Human C3 deficiency associated with impairments in dendritic cell differentiation, memory B cells, and regulatory T cells. J Immunol (Baltimore, MD: 1950). 2008;181(7):5158–66.CrossRefGoogle Scholar
  95. 95.
    Grumach AS, Leitao MF, Arruk VG, Kirschfink M, Condino-Neto A. Recurrent infections in partial complement factor I deficiency: evaluation of three generations of a Brazilian family. Clin Exp Immunol. 2006;143(2):297–304.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Leitao MF, Vilela MM, Rutz R, Grumach AS, Condino-Neto A, Kirschfink M. Complement factor I deficiency in a family with recurrent infections. Immunopharmacology. 1997;38(1–2):207–13.PubMedCrossRefGoogle Scholar
  97. 97.
    Reis ES, Falcao D, Isaac L. Clinical aspects and molecular basis of primary deficiencies of complement component C3 and its regulatory proteins factor I and factor H. Scand J Immunol. 2006;63(3):155–68.CrossRefGoogle Scholar
  98. 98.
    Porteu F, Fischer A, Descamps-Latscha B, Halbwachs-Mecarelli L. Defective complement receptors (CR1 and CR3) on erythrocytes and leukocytes of factor I (C3b-inactivator) deficient patients. Clin Exp Immunol. 1986;66(2):463–71.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Naked GM, Florido MP, Ferreira de Paula P, Vinet AM, Inostroza JS, Isaac L. Deficiency of human complement factor I associated with lowered factor H. Clin Immunol (Orlando, Fla). 2000;96(2):162–7.CrossRefGoogle Scholar
  100. 100.
    Thompson R, Winterborn M. Hypocomplementaemia due to a genetic deficiency of beta 1H globulin. Clin Exp Immunol. 1981;46(1):110.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Falcao DA, Reis ES, Paixao-Cavalcante D, Amano MT, Delcolli MI, Florido MP, et al. Deficiency of the human complement regulatory protein factor H associated with low levels of component C9. Scand J Immunol. 2008;68(4):445–55.PubMedCrossRefGoogle Scholar
  102. 102.
    Saunders RE, Goodship TH, Zipfel PF, Perkins SJ. An interactive web database of factor H-associated hemolytic uremic syndrome mutations: insights into the structural consequences of disease-associated mutations. Hum Mutat. 2006;27(1):21–30.PubMedCrossRefGoogle Scholar
  103. 103.
    Lappegard KT, Christiansen D, Pharo A, Thorgersen EB, Hellerud BC, Lindstad J, et al. Human genetic deficiencies reveal the roles of complement in the inflammatory network: lessons from nature. Proc Natl Acad Sci U S A. 2009;106(37):15861–6.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Botto M, Kirschfink M, Macor P, Pickering MC, Wurzner R, Tedesco F. Complement in human diseases: Lessons from complement deficiencies. Mol Immunol. 2009;46(14):2774–83.PubMedCrossRefGoogle Scholar
  105. 105.
    Platonov AE, Beloborodov VB, Vershinina IV. Meningococcal disease in patients with late complement component deficiency: studies in the U.S.S.R. Medicine (Baltimore). 1993;72(6):374–92.CrossRefGoogle Scholar
  106. 106.
    Fukumori Y, Yoshimura K, Ohnoki S, Yamaguchi H, Akagaki Y, Inai S. A high incidence of C9 deficiency among healthy blood donors in Osaka, Japan. Int Immunol. 1989;1(1):85–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Kaplan AP, Joseph K. Pathogenic mechanisms of bradykinin mediated diseases: dysregulation of an innate inflammatory pathway. Adv Immunol. 2014;121:41–89.PubMedCrossRefGoogle Scholar
  108. 108.
    Cicardi M, Aberer W, Banerji A, Bas M, Bernstein JA, Bork K, et al. Classification, diagnosis, and approach to treatment for angioedema: consensus report from the hereditary angioedema international working group. Allergy. 2014;69(5):602–16.PubMedCrossRefGoogle Scholar
  109. 109.
    Veronez CL, Moreno AS, Constantino-Silva RN, Maia LS, Ferriani MP, Castro FF, et al. Hereditary angioedema with normal C1 inhibitor and F12 mutations in 42 Brazilian families. J Allergy Clin Immunol Pract. 2017;6:1209–1216.e8.PubMedCrossRefGoogle Scholar
  110. 110.
    Bork K, Hardt J, Witzke G. Fatal laryngeal attacks and mortality in hereditary angioedema due to C1-INH deficiency. J Allergy Clin Immunol. 2012;130(3):692–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Lang DM, Aberer W, Bernstein JA, Chng HH, Grumach AS, Hide M, et al. International consensus on hereditary and acquired angioedema. Ann Allergy Asthma Immunol. 2012;109(6):395–402.PubMedCrossRefGoogle Scholar
  112. 112.
    Maurer M, Magerl M, Ansotegui I, Aygoren-Pursun E, Betschel S, Bork K, et al. The international WAO/EAACI guideline for the management of hereditary angioedema-the 2017 revision and update. Allergy. 2018;73:1575–96.PubMedCrossRefGoogle Scholar
  113. 113.
    Pu JJ, Brodsky RA. Paroxysmal nocturnal hemoglobinuria from bench to bedside. Clin Transl Sci. 2011;4(3):219–24.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Roos D, Law SK. Hematologically important mutations: leukocyte adhesion deficiency. Blood Cells Mol Dis. 2001;27(6):1000–4.PubMedCrossRefGoogle Scholar
  115. 115.
    Hanna S, Etzioni A. Leukocyte adhesion deficiencies. Ann N Y Acad Sci. 2012;1250:50–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anete Sevciovic Grumach
    • 1
  • Kathleen E. Sullivan
    • 2
  1. 1.Center of Reference for Rare Diseases, Clinical Immunology, Faculdade de Medicina ABCSanto AndreBrazil
  2. 2.ARC 1216 Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations