Image Data Processing to Obtain Fibre Orientation in Fibre-Reinforced Elements Using Computed Tomography Scan

  • Jesús MínguezEmail author
  • Miguel A. Vicente
  • Dorys C. González
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 95)


Computed tomography (CT) technique is of increasing interest in research related to concrete technology. This technology provides the possibility of visualize the internal structure of concrete, including pores, cracks, aggregates and fibres. In this paper, the CT scan is used to determine the position and orientation of the fibres in case of steel fibre reinforced high strength concrete elements (SFRHSC). This paper shows a home-made numerical procedure, automated through a MATLAB routine, which enables, fast and reliable, get the orientation of each and every one of the fibres and their center of gravity. The procedure shown can be used with any type of fibre reinforced material, with the only restriction that a wide difference between density of fibres and density of matrix is needed. The algorithm is simple and robust. The result is a fast algorithm and a routine easy to use. In addition, the validation tests show that the error is almost zero.


  1. 1.
    Damme, S.V., Franchois, A., Zutter, D.D., Taerwe, L.: Nondestructive determination of the steel fiber content in concrete slabs with an open-ended coaxial probe. IEEE Trans. Geosci. Remote Sens. 42(11), 2511–2521 (2004). Scholar
  2. 2.
    Eik, M., Herrmann, H.: Raytraced images for testing the reconstruction of fibre orientation distributions. Proc. Est. Acad. Sci. 61, 128–136 (2012). Scholar
  3. 3.
    Faifer, M., Ottoboni, R., Toscani, S., Ferrara, L.R.F.: A multielectrode measurement system for steel fiber reinforced concrete materials monitoring. In: Proceedings of IEEE Instrumentation Measurement Technology Conference, pp. 313–318. Singapore (2009)Google Scholar
  4. 4.
    Faifer, M., Ottoboni, R., Toscani, S., Ferrara, L.: Nondestructive testing of steel fiber reinforced concrete using a magnetic approach. IEEE Trans. Instrum. Meas. 60(5), 1709–1717 (2011)CrossRefGoogle Scholar
  5. 5.
    Herrmann, H., Pastorelli, E., Kallonen, A., Suuronen, J.P.: Methods for fibre orientation analysis of X-ray tomography images of steel fibre reinforced concrete (SFRC). J. Mater. Sci. 51(8), 3772–3783 (2016). Scholar
  6. 6.
    Jianming, G., Wie, S., Keiji, M.: Mechanical properties of steel fiber reinforced high strength, lightweight concrete. Cement Concr. Compos. 19(4), 307–313 (1997)CrossRefGoogle Scholar
  7. 7.
    Kang, S., Park, J., Ryu, G., Kim, S.: Investigation of fiber alignment of UHSFRC in flexural members. In: Proceedings of 8th International Symposium on Utilization of High-Strength and High-Performance Concrete, pp. 709–714. Tokyo, Japan (2008)Google Scholar
  8. 8.
    Kang, S., Lee, B., Park, Y., Kim, J.: Tensile fracture properties of an ultra high performance fiber reinforced concrete (UHPFRC) with steel fiber. Compos. Struct. 92(1), 61–71 (2010)CrossRefGoogle Scholar
  9. 9.
    Kang, S., Lee, B., Kim, J., Kim, Y.Y.: The effect of fiber distribution characteristics on the flexural strength of steel fiber reinforced ultra high strength concrete. Constr. Build. Mater. 25(5), 2450–2457 (2011)CrossRefGoogle Scholar
  10. 10.
    Kaufmann, J., Frech, K., Schuetz, P., Münch, B.: Rebund and orientation of fibers in wet sprayed concrete application. Constr. Build. Mater. 49, 15–22 (2013)CrossRefGoogle Scholar
  11. 11.
    Kim, J., Kim, J., Ha, G., Kim, Y.: Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag. Cement Concr. Res. 37(7), 1096–1105 (2007)CrossRefGoogle Scholar
  12. 12.
    Krause, M., Hausherr, J., Burgeth, B., Herrmann, C., Krenkel, W.: Determination of the fibre orientation in composites using the structure tensor and local X-ray transform. J. Mater. Sci. 45(4), 888–896 (2010). Scholar
  13. 13.
    Mangat, P.: Tensile strength of steel fiber reinforced concrete. Cement Concr. Res. 6(2), 245–252 (1976)CrossRefGoogle Scholar
  14. 14.
    Ozyurt, N., Mason, T.O., Shah, S.P.: Nondestructive monitoring of fiber orientation using AC-IS: an industrial-scale application. Cement Concr. Res. 36(9), 1653–1660 (2006a)CrossRefGoogle Scholar
  15. 15.
    Ozyurt, N., Woo, L., Mason, T.O., Shah, S.P.: Monitoring fiber dispersion in fiber reinforced cementitious materials: comparison of AC impedance spectroscopy and image analysis. ACI Mater. J. 103(5), 340–347 (2006b)Google Scholar
  16. 16.
    Pastorelli, E., Herrmann, H.: Time-efficient automated analysis for fibre orientations in steel fibre reinforced concrete. Proc. Est. Acad. Sci. 65(1), 28–36 (2016). Scholar
  17. 17.
    Ponikiewski, T., Katzer, J., Bugdol, M., Rudzki, M.: Steel fibre spacing in self-compacting concrete precast walls by X-ray computed tomography. Mater. Struct. 48(12), 3863–3874 (2015a). Scholar
  18. 18.
    Ponikiewski, T., Katzer, J., Bugdol, M., Rudzki, M.: X-ray computed tomography harnessed to determine 3D spacing of steel fibres in self compacting concrete (SCC) slabs. Constr. Build. Mater. 74, 102–108 (2015b). Scholar
  19. 19.
    Schnell, J., Schladitz, K., Schuler, F.: Richtungsanalyse von fasern in betonen auf basis der computer-tomographie. Beton- und Stahlbetonbau 105(2), 72–77 (2010). Scholar
  20. 20.
    Song, P., Hwang, S.: Mechanical properties of high strength steel fiber reinforced concrete. Constr. Build. Mater. 18(9), 669–673 (2004)CrossRefGoogle Scholar
  21. 21.
    Stroeven, P., Hu, J.: Review paper—stereology: historical perspective and applicability to concrete technology. Mater. Struct. 39(1), 127–135 (2006). Scholar
  22. 22.
    Suuronen, J.P., Kallonen, A., Eik, M., Puttonen, J., Serimaa, R., Herrmann, H.: Analysis of short fibres orientation in steel fibre reinforced concrete (SFRC) using X-ray tomography. J. Mater. Sci. 48(3), 1358–1367 (2013). Scholar
  23. 23.
    Torrents, J., Mason, T., Peled, A., Shah, S., Garboczi, E.: Analysis of the impedance spectra of short conductive fiber-reinforced composites. J. Mater. Sci. 36(16), 4003–4012 (2001)CrossRefGoogle Scholar
  24. 24.
    Vicente, M., Minguez, J., González, D.: The use of computed tomography to explore the microstructure of materials in civil engineering: from rocks to concrete. In: Halefoglu, D.A.M. (ed.) Computed Tomography-Advanced Applications. InTech (2017). Scholar
  25. 25.
    Woo, L., Wansom, S., Hixson, A., Campo, M.A., Mason, T.O.: A universal equivalent circuit model for the impedance response of composites. J. Mater. Sci. 38(10), 2265–2270 (2003)Google Scholar
  26. 26.
    Woo, L., Wansom, S., Ozyurt, N., Mu, B., Shah, S., Mason, T.O.: Characterizing fiber dispersion in cement composites using ac-impedance spectrometry. Cement Concr. Compos. 27(6), 627–636 (2005)Google Scholar
  27. 27.
    Yazici, S., Inan, G., Tabak, V.: Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Constr. Build. Mater. 21(6), 1250–1253 (2007)CrossRefGoogle Scholar
  28. 28.
    Žirgulis, G., Švec, O., Geiker, M.R., Cwirzen, A., Kanstad, T.: Influence of reinforcing bar layout on fibre orientation and distribution in slabs cast from fibre-reinforced self-compacting concrete (FRSCC). Struct. Concr. 17(2), 245–256 (2016). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jesús Mínguez
    • 1
    Email author
  • Miguel A. Vicente
    • 1
  • Dorys C. González
    • 1
  1. 1.Department of Civil EngineeringUniversity of BurgosBurgosSpain

Personalised recommendations