Advertisement

Data Reliability and Quality in Body Area Networks for Diabetes Monitoring

  • Geshwaree HuzooreeEmail author
  • Kavi Kumar Khedo
  • Noorjehan Joonas
Chapter
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

In wireless body area network (WBAN), data captured from different types of wearable, invasive, minimally invasive, or non-invasive sensors have the immense potential to contribute for real-time decisions and effective healthcare services for better diabetes monitoring. Low quality data can be misleading and thus result in inaccurate diagnosis, ineffective health decision-making, and even loss of lives. High data reliability and quality is of paramount importance in WBAN to ensure wide systems’ adoption and technological acceptance. Based on existing literature on WBAN systems, sensor technologies and data quality (DQ) dimensions, a framework is proposed to ensure high data quality and reliability in WBANs for effective and real-time diabetes monitoring. The framework is composed of a set of DQ dimensions to verify that the information gleaned from sensors, processed, and delivered are of high quality so that diabetes patients and healthcare professionals are able to make reliable, high-precision diagnoses, and real-time treatment decisions. Potential research directions are pointed out for further optimization of data quality and reliability in Body Area Network (BAN) on the sensor level, network level, and human-centric level.

Keywords

Wireless body area network Data quality Diabetes monitoring 

References

  1. 1.
    C. Chen, X. Zhao, Z. Li, Z. Zhu, S. Qian, A.J. Flewitt, Current and emerging technology for continuous glucose monitoring. Sensors 17(1), 182 (2017)CrossRefGoogle Scholar
  2. 2.
    IDF Diabetes Atlas, IDF Diabetes Atlas (2017)Google Scholar
  3. 3.
    H. Lee, K. Park, B. Lee, Issues in data fusion for healthcare monitoring. in Issues in Data Fusion for Healthcare Monitoring, no. Jan 2008 (2013)Google Scholar
  4. 4.
    A. Dearden, P. Wright, S. Bowen, F. Rahman, M. Cobb, D. Wolstenholme, Pervasive healthcare in lived experience: thinking beyond the home, in Procceedings of the 4th International ICST Conference on Pervasive Computer Technology and Healthcare, (2010), pp. 1–4Google Scholar
  5. 5.
    U. Varshney, Mobile health: four emerging themes of research. Decis. Support. Syst. 66, 20–35 (2014)CrossRefGoogle Scholar
  6. 6.
    M.U. Harun, A. Rasyid, F.A. Saputra, A. Christian. Implementation of blood glucose levels monitoring system based on wireless body area network, in IEEE International Conference on Consumer Electronics, pp. 7–8, (2016)Google Scholar
  7. 7.
    D.M. Barakah, M. Ammad-Uddin, A survey of challenges and applications of wireless Body Area Network (WBAN) and role of a virtual doctor server in existing architecture, in Proceedings of the 3rd International Conference on Intelligent Systems Model. Simulation, ISMS 2012, no. April, pp. 214–219 (2012)Google Scholar
  8. 8.
    G. Huzooree, K.K. Khedo, N. Joonas, Wireless body area network system architecture for real-time diabetes monitoring, in Emerging Trends in Electrical, Electronic and Communications Engineering, (ELECOM, Osaka, 2016), pp. 262–271Google Scholar
  9. 9.
    D. Uniyal, V. Raychoudhury, Pervasive Healthcare-A Comprehensive Survey of Tools and Techniques (2014), p. 48Google Scholar
  10. 10.
    Diabetes.co.uk, Blood Glucose Meter Guide [Online]. http://www.diabetes.co.uk/diabetes_care/blood_glucose_monitor_guide.html. Accessed 26 Dec 2017
  11. 11.
    G. Huzooree, K.K. Khedo, N. Joonas, Low-cost body area network for monitoring of diabetic patient, in Design and Development of Affordable Healthcare Technologies, vol. 2030, (IGI Global, Hershey, PA, 2018), pp. 135–164Google Scholar
  12. 12.
    J. Šoupal, L. Petruželková, M. Flekač, T. Pelcl, M. Matoulek, M. Daňková, J. Škrha, Š. Svačina, M. Prázný, Comparison of different treatment modalities for type 1 diabetes, including sensor-augmented insulin regimens, in 52 weeks of follow-up: a COMISAIR study. Diabetes Technol. Ther 18(9), 532–538 (2016)CrossRefGoogle Scholar
  13. 13.
    D. Rodbard, Continuous glucose monitoring: a review of successes, challenges, and opportunities. Diabetes Technol. Ther 18, S2-3–S2-13 (2016)CrossRefGoogle Scholar
  14. 14.
    T.S. Bailey, S. Alva, B.W. Bode, M.P. Christiansen, L.J. Klaff, The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol. Ther 17(11), 787–794 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Ding, M. Schumacher, Sensor monitoring of physical activity to improve glucose management in diabetic patients: a review. Sensors 16(5), 589 (2016)CrossRefGoogle Scholar
  16. 16.
    H. Anhalt, Limitations of continuous glucose monitor usage. Diabetes Technol. Ther 18(3), 115–117 (2016)CrossRefGoogle Scholar
  17. 17.
    G. Frontino, F. Meschi, R. Bonfanti, A. Rigamonti, R. Battaglino, V. Favalli, C. Bonura, G. Ferro, G. Chiumello, Future perspectives in glucose monitoring sensors. Eur. Endocrinol. 9(1), 21–26 (2013)CrossRefGoogle Scholar
  18. 18.
    U.S. Food and Drug Administration, Dexcom G5 Mobile Continuous Glucose Monitoring System. [Online]. https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DeviceApprovalsandClearances/Recently-ApprovedDevices/ucm533969.htm. Accessed 27 Dec 2017
  19. 19.
    A.G.A. Aggidis, J.D. Newman, G.A. Aggidis, Investigating Pipeline and State of the Art Blood Glucose Biosensors to Formulate Next Steps, vol 74 (Elsevier, New York, NY, 2015)Google Scholar
  20. 20.
    A. Basu, S. Veettil, R. Dyer, T. Peyser, R. Basu, Direct evidence of acetaminophen interference with subcutaneous glucose sensing in humans: a pilot study. Diabetes Technol. Ther. 18(S2), S2-43–S2-47 (2016)CrossRefGoogle Scholar
  21. 21.
    Dexcom Inc., Dexcom and Insulin Pumps. [Online]. https://www.dexcom.com/insulin-pumps. Accessed 27 Dec 2017
  22. 22.
    T.S. Bailey, S. Alva, B.W. Bode, M.P. Christiansen, L.J. Klaff, Response to the comment on ‘The performance and usability of a factory-calibrated flash glucose monitoring system’ by Bailey et al. Diabetes Technol. Ther. 18(5), 336–337 (2016)CrossRefGoogle Scholar
  23. 23.
    M.P. Christiansen, S.K. Garg, R. Brazg, B.W. Bode, T.S. Bailey, R.H. Slover, A. Sullivan, S. Huang, J. Shin, S.W. Lee, F.R. Kaufman, Accuracy of a fourth-generation subcutaneous continuous glucose sensor. Diabetes Technol. Ther. 19(8), 87 (2017)CrossRefGoogle Scholar
  24. 24.
    T.S. Bailey, A. Chang, M. Christiansen, Clinical accuracy of a continuous glucose monitoring system with an advanced algorithm. J. Diabetes Sci. Technol. 9(2), 209–214 (2015)CrossRefGoogle Scholar
  25. 25.
    Dexcom Inc., Dexcom G5 Mobile Continuous Glucose Monitoring (CGM) System for Non-adjunctive Management of Diabetes (Dexcom Inc., San Diego, CA, 2016). https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/MedicalDevices/MedicalDevicesAdvisoryCommittee/ClinicalChemistryandClinicalToxicologyDevicesPanel/UCM512789.pdf. Accessed 30 Dec 2017Google Scholar
  26. 26.
    R.A. Lal, D.M. Maahs, Clinical use of continuous glucose monitoring in pediatrics. Diabetes Technol. Ther. 19(S2), S-37–S-43 (2017)CrossRefGoogle Scholar
  27. 27.
    S.K. Garg, S.A. Weinzimer, W.V. Tamborlane, B.a. Buckingham, B.W. Bode, T.S. Bailey, R.L. Brazg, J. Ilany, R.H. Slover, S.M. Anderson, R.M. Bergenstal, B. Grosman, A. Roy, T.L. Cordero, J. Shin, S.W. Lee, F.R. Kaufman, Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technol. Ther. 19(3), 155–163 (2017)CrossRefGoogle Scholar
  28. 28.
    R.S. Mazze, Acceptance of FGM or CGM in clinical decision-making and patient preference: where do we go from here? Diabetes Technol. Ther. 19(3), 142–144 (2017)CrossRefGoogle Scholar
  29. 29.
    D. Bruen, C. Delaney, L. Florea, D. Diamond, Glucose sensing for diabetes monitoring: recent developments. Sensors 17(8) (2017)CrossRefGoogle Scholar
  30. 30.
    D.C. Klonoff, D. Ahn, A. Drincic, Continuous glucose monitoring: a review of the technology and clinical use. Diabetes Res. Clin. Pract. 133, 178–192 (2017)CrossRefGoogle Scholar
  31. 31.
    J.T. Baca, D.N. Finegold, S.A. Asher, Tear glucose analysis for the noninvasive detection and monitoring of diabetes mellitus. Ocul. Surf. 5(4), 280–293 (2007)CrossRefGoogle Scholar
  32. 32.
    A. Tricoli, N. Nasiri, S. De, Wearable and miniaturized sensor technologies for personalized and preventive medicine. Adv. Funct. Mater. 27(15), 1–19 (2017)CrossRefGoogle Scholar
  33. 33.
    M.X. Chu, T. Shirai, D. Takahashi, T. Arakawa, H. Kudo, K. Sano, S.I. Sawada, K. Yano, Y. Iwasaki, K. Akiyoshi, M. Mochizuki, K. Mitsubayashi, Biomedical soft contact-lens sensor for in situ ocular biomonitoring of tear contents. Biomed. Microdevices 13(4), 603–611 (2011)CrossRefGoogle Scholar
  34. 34.
    D.K. Sen, G.S. Sarin, Tear glucose levels in normal people and in diabetic patients. Br. J. Ophthalmol. 64(9), 693–695 (1980)CrossRefGoogle Scholar
  35. 35.
    J. Zhang, W. Hodge, C. Hutnick, X. Wang, Noninvasive diagnostic devices for diabetes through measuring tear glucose. J. Diabetes Sci. Technol. 5(1), 166–172 (2011)CrossRefGoogle Scholar
  36. 36.
    Y.T. Liao, H. Yao, A. Lingley, B. Parviz, B.P. Otis, A 3-μW CMOS glucose sensor for wireless contact-lens tear glucose monitoring. IEEE J. Solid State Circuits 47(1), 335–344 (2012)CrossRefGoogle Scholar
  37. 37.
    H. Kudo, M. Chu, K. Miyajima, T. Arakawa, K. Mitsubayashi, Y. Hiranuma, H. Hiramatsu, Soft contact-lens biosensor for real-time tear sugar monitoring at the eye, in Conf. Proc. IEEE Int. Conf. Syst. Man Cybern., vol. 2012, (2012), pp. 2048–2051Google Scholar
  38. 38.
    Y. Hu, X. Jiang, L. Zhang, J. Fan, W. Wu, Construction of near-infrared photonic crystal glucose-sensing materials for ratiometric sensing of glucose in tears. Biosens. Bioelectron. 48, 94–99 (2013)CrossRefGoogle Scholar
  39. 39.
    K. Mitsubayashi, Novel Biosensing Devices for Medical Applications (IEEE, Yokohama, 2014), pp. 349–352Google Scholar
  40. 40.
    A. Hennig, J. Lauko, A. Grabmaier, C. Wilson, Wireless tear glucose sensor. Proc. Eng. 87, 66–69 (2014)CrossRefGoogle Scholar
  41. 41.
    R. Badugu, J.R. Lakowicz, C.D. Geddes, Ophthalmic glucose monitoring using disposable contact lenses—a review. J. Fluoresc. 14(5), 617–633 (2014)CrossRefGoogle Scholar
  42. 42.
    C. Liu, Y. Sheng, Y. Sun, J. Feng, S. Wang, J. Zhang, J. Xu, D. Jiang, A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva. Biosens. Bioelectron. 70, 455–461 (2015)CrossRefGoogle Scholar
  43. 43.
    J. Kim, M. Kim, M.-S. Lee, K. Kim, S. Ji, Y.-T. Kim, J. Park, K. Na, K.-H. Bae, H. Kyun Kim, F. Bien, C. Young Lee, J.-U. Park, Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017)CrossRefGoogle Scholar
  44. 44.
    S. Gittings, N. Turnbull, B. Henry, C.J. Roberts, P. Gershkovich, Characterisation of human saliva as a platform for oral dissolution medium development. Eur. J. Pharm. Biopharm. 91, 16–24 (2015)CrossRefGoogle Scholar
  45. 45.
    H. Elmongy, M. Abdel-Rehim, Saliva as an alternative specimen to plasma for drug bioanalysis. A review. TrAC Trends Anal. Chem. 83, 70–79 (2016)CrossRefGoogle Scholar
  46. 46.
    P. Abikshyeet, V. Ramesh, N. Oza, Glucose estimation in the salivary secretion of diabetes mellitus patients. Diabetes, Metab. Syndr. Obes. Targets Ther. 5, 149–154 (2012)Google Scholar
  47. 47.
    M. Srinivasan, C. Blackburn, M. Mohamed, V. Sivagami, J. Blum, Literature-based discovery of salivary biomarkers for type 2 diabetes mellitus. Biomark. Insights 10, 39–45 (2015)CrossRefGoogle Scholar
  48. 48.
    M.A. Javaid, A.S. Ahmed, R. Durand, S.D. Tran, Saliva as a diagnostic tool for oral and systemic diseases. J. Oral Biol. Craniofacial Res. 6(1), 67–76 (2016)CrossRefGoogle Scholar
  49. 49.
    M. Dhanya, S. Hegde, Salivary glucose as a diagnostic tool in type II diabetes mellitus: a case-control study. Niger J Clin Pract, 486–490 (2016)CrossRefGoogle Scholar
  50. 50.
    A. Zlotogorski-Hurvitz, D. Dayan, G. Chaushu, J. Korvala, T. Salo, R. Sormunen, M. Vered, Human saliva-derived exosomes: comparing methods of isolation. J. Histochem. Cytochem. 63(3), 181–189 (2015)CrossRefGoogle Scholar
  51. 51.
    M.V.V. Lima-Aragão, J.D.J. De Oliveira-Junior, M.C.G. Maciel, L.A. Silva, F.R.F. Do Nascimento, R.N.M. Guerra, Salivary profile in diabetic patients: biochemical and immunological evaluation. BMC. Res. Notes 9(1), 1–7 (2016)CrossRefGoogle Scholar
  52. 52.
    R. Tiwari, Assessments of the attitudes of the clinicians in the emergency setting towards an act of parasuicide. Ind J. Public Heal. Res. Dev 2(1), 52–56 (2011)Google Scholar
  53. 53.
    S.E. Abd-Elraheem, A.M.E.L. Saeed, H.H. Mansour, Salivary changes in type 2 diabetic patients. Diabetes Metab. Syndr. Clin. Res. Rev., 637–641 (2017)Google Scholar
  54. 54.
    C.S. Miller, J.D. Foley, A.L. Bailey, C.L. Campell, R.L. Humphries, N. Christodoulides, P.N. Floriano, G. Simmons, B. Bhagwandin, J.W. Jacobson, S.W. Redding, J.L. Ebersole, J.T. McDevitt, Current developments in salivary diagnostics. Biomark. Med 4(1), 171–189 (2010)CrossRefGoogle Scholar
  55. 55.
    R. Ravindran, D.M. Gopinathan, S. Sukumaran, Estimation of salivary glucose and glycogen content in exfoliated buccal mucosal cells of patients with type ii diabetes mellitus. J. Clin. Diagn. Res 9(5), ZC89–ZC93 (2015)Google Scholar
  56. 56.
    S. Gupta, S.V. Sandhu, H. Bansal, D. Sharma, Comparison of salivary and serum glucose levels in diabetic patients. J. Diabetes Sci. Technol. 9(1), 91–96 (2015)CrossRefGoogle Scholar
  57. 57.
    M.B. Border, S. Schwartz, J. Carlson, C.F. Dibble, H. Kohltfarber, S. Offenbacher, J.B. Buse, S. Bencharit, Exploring salivary proteomes in edentulous patients with type 2 diabetes. Mol. BioSyst. 8(4), 1304 (2012)CrossRefGoogle Scholar
  58. 58.
    W.V. Giannobile, J.T. McDevitt, R.S. Niedbala, D. Malamud, Translational and clinical applications of salivary diagnostics. Adv. Dent. Res. 23(4), 375–380 (2011)CrossRefGoogle Scholar
  59. 59.
    I. Nakamoto, K. Morimoto, T. Takeshita, M. Toda, Correlation between saliva glycated and blood glycated proteins. Environ. Health Prev. Med. 8(3), 95–99 (2003)CrossRefGoogle Scholar
  60. 60.
    W. Zhang, Y. Du, M.L. Wang, Noninvasive glucose monitoring using saliva nano-biosensor. Sens. Bio-Sensing Res. 4, 23–29 (2015)CrossRefGoogle Scholar
  61. 61.
    K. Petropoulos, S. Piermarini, S. Bernardini, G. Palleschi, D. Moscone, Development of a disposable biosensor for lactate monitoring in saliva. Sensors Actuators B Chem. 237, 8–15 (2016)CrossRefGoogle Scholar
  62. 62.
    T. Arakawa, Y. Kuroki, H. Nitta, K. Toma, K. Mitsubayashi, S. Takeuchi, T. Sekita, S. Minakuchi, Mouth guard type biosensor cavitous sensor for monitoring of saliva glucose with telemetry system. Proc. Int. Conf. Sens. Technol. ICST 2016, 46–49 (2016)Google Scholar
  63. 63.
    A. Soni, S.K. Jha, Smartphone based non-invasive salivary glucose biosensor. Anal. Chim. Acta 996, 54–63 (2017)CrossRefGoogle Scholar
  64. 64.
    R.B. Dominguez, M.A. Orozco, G. Chávez, A. Márquez-Lucero, The evaluation of a low-cost colorimeter for glucose detection in salivary samples. Sensors (Switzerland) 17(11), 19–21 (2017)CrossRefGoogle Scholar
  65. 65.
    R.S.P. Malon, S. Sadir, M. Balakrishnan, E.P. Córcoles, Saliva-based biosensors: noninvasive monitoring tool for clinical diagnostics. Biomed. Res. Int. 2014(i), 1–20 (2014)CrossRefGoogle Scholar
  66. 66.
    M.M. Delgado-Povedano, M. Calderón-Santiago, M.D. Luque de Castro, F. Priego-Capote, Metabolomics analysis of human sweat collected after moderate exercise. Talanta 177, 47–65 (2018)CrossRefGoogle Scholar
  67. 67.
    M. McCaul, T. Glennon, D. Diamond, Challenges and opportunities in wearable technology for biochemical analysis in sweat. Curr. Opin. Electrochem., 46–50 (2017)CrossRefGoogle Scholar
  68. 68.
    J. Moyer, D. Wilson, I. Finkelshtein, B. Wong, R. Potts, Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol. Ther. 14(5), 398–402 (2012)CrossRefGoogle Scholar
  69. 69.
    K. Sakaguchi, Y. Hirota, N. Hashimoto, W. Ogawa, T. Hamaguchi, T. Matsuo, J.I. Miyagawa, M. Namba, T. Sato, S. Okada, K. Tomita, M. Matsuhisa, H. Kaneto, K. Kosugi, H. Maegawa, H. Nakajima, A. Kashiwagi, Evaluation of a minimally invasive system for measuring glucose area under the curve during oral glucose tolerance tests: usefulness of sweat monitoring for precise measurement. J. Diabetes Sci. Technol. 7(3), 678–688 (2013)CrossRefGoogle Scholar
  70. 70.
    P. Makaram, D. Owens, J. Aceros, Trends in nanomaterial-based non-invasive diabetes sensing technologies. Diagnostics 4(2), 27–46 (2014)CrossRefGoogle Scholar
  71. 71.
    M.S. Talary, F. Dewarrat, D. Huber, A. Caduff, In vivo life sign application of dielectric spectroscopy and non-invasive glucose monitoring. J. Non-Cryst. Solids 353(47–51), 4515–4517 (2007)CrossRefGoogle Scholar
  72. 72.
    O. Olarte, J. Chilo, J. Pelegri-Sebastia, K. Barbe, W. Van Moer, Glucose detection in human sweat using an electronic nose. Conf. IEEE Eng. Med. Biol. Soc., 1462–1465 (2013, 2013)Google Scholar
  73. 73.
    G. Liu, C. Ho, N. Slappey, Z. Zhou, S.E. Snelgrove, M. Brown, A. Grabinski, X. Guo, Y. Chen, K. Miller, J. Edwards, T. Kaya, A wearable conductivity sensor for wireless real-time sweat monitoring. Sensors Actuators B Chem. 227, 35–42 (2016)CrossRefGoogle Scholar
  74. 74.
    E. Cho, M. Mohammadifar, S. Choi, A self-powered sensor patch for glucose monitoring in sweat. Proc. IEEE Int. Conf. Micro Electro Mech. Syst. 2017, 366–369 (2017)Google Scholar
  75. 75.
    H. Lee, C. Song, Y.S. Hong, M.S. Kim, H.R. Cho, T. Kang, K. Shin, S.H. Choi, T. Hyeon, D.-H. Kim, Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3(3), e1601314 (2017)CrossRefGoogle Scholar
  76. 76.
    S. Anastasova, B. Crewther, P. Bembnowicz, V. Curto, H.M. Ip, B. Rosa, G.-Z. Yang, A wearable multisensing patch for continuous sweat monitoring. Biosens. Bioelectron. 93, 139–145 (2017)CrossRefGoogle Scholar
  77. 77.
    S. Siyang, T. Kerdcharoen, C. Wongchoosuk Diabetes Diagnosis by Direct Measurement from Urine Odor Using Electronic Nose, in The 5th 2012 Biomedical Engineering International Conference, May 2012Google Scholar
  78. 78.
    L. Su, J. Feng, X. Zhou, C. Ren, H. Li, X. Chen, Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal. Chem. 84(13), 5753–5758 (2012)CrossRefGoogle Scholar
  79. 79.
    H.D. Park, K.J. Lee, H.R. Yoon, H.H. Nam, Design of a portable urine glucose monitoring system for health care. Comput. Biol. Med. 35(4), 275–286 (2005)CrossRefGoogle Scholar
  80. 80.
    M. Miyashita, N. Ito, S. Ikeda, T. Murayama, K. Oguma, J. Kimura, Development of urine glucose meter based on micro-planer amperometric biosensor and its clinical application for self-monitoring of urine glucose. Biosens. Bioelectron. 24(5), 1336–1340 (2009)CrossRefGoogle Scholar
  81. 81.
    A.A. Karyakin, S.V. Nikulina, D.V. Vokhmyanina, E.E. Karyakina, E.K.H. Anaev, A.G. Chuchalin, Non-invasive monitoring of diabetes through analysis of the exhaled breath condensate (aerosol). Electrochem. Commun. 83, 81–84 (2017)CrossRefGoogle Scholar
  82. 82.
    O.B. Crofford, R.E. Mallard, R.E. Winton, N.L. Rogers, J.C. Jackson, U. Keller, Acetone in breath and blood. Trans. Am. Clin. Climatol. Assoc. 88, 128–139 (1977)Google Scholar
  83. 83.
    D. Guo, D. Zhang, L. Zhang, G. Lu, Non-invasive blood glucose monitoring for diabetics by means of breath signal analysis. Sensors Actuators B Chem. 173, 106–113 (2012)CrossRefGoogle Scholar
  84. 84.
    H.M. Saraoglu, M. Kocan, Determination of diabetic blood glucose value from breath odor using QCM sensor based electronic nose (IEEE, Antalya, 2010), pp. 4–7Google Scholar
  85. 85.
    K. Yan, D. Zhang, D. Wu, H. Wei, G. Lu, Design of a breath analysis system for diabetes screening and blood glucose level prediction. I.E.E.E. Trans. Biomed. Eng. 61(11), 2787–2795 (2014)CrossRefGoogle Scholar
  86. 86.
    Pop Test LLC, Glucose Pop TEST. [Online]. http://www.diabetespoptest.com/. Accessed 30 Dec 2017
  87. 87.
    LLC Quick, IQuickIt Saliva Analyzer (LLC Quick, Farmington, CT).Google Scholar
  88. 88.
    Light Touch Medical Inc., Ocular Glucose Monitor. [Online]. Available: http://tearglucose.com/. Accessed 30 Dec 2017
  89. 89.
    J.T. LaBelle, Tear TOUCH Glucose Sensing. [Online]. http://labellelab.asu.edu/research/touch/. Accessed 30 Dec 2017
  90. 90.
    C. Bernal, GlucosAlarm. [Online]. http://www.glucosalarm.com/. Accessed 30 Dec 2018
  91. 91.
    G. Huzooree, K.K. Khedo, N. Joonas, Pervasive mobile healthcare systems for chronic disease monitoring. Health Informatics J., 1–25 (2017)Google Scholar
  92. 92.
    D. Hunkeler, P. Scotton, A quality-of-information-aware framework for data models in wireless sensor networks. IEEE, 742–747 (2008)Google Scholar
  93. 93.
    G.K. Tayi, D.P. Ballou, Examining data quality. Commun. ACM 41(2), 54–57 (1998)CrossRefGoogle Scholar
  94. 94.
    F. Sidi, P.H. Shariat Panahy, L.S. Affendey, M. a Jabar, H. Ibrahim, A. Mustapha, Data quality: a survey of data quality dimensions. Inf. Retr. Knowl. Manag. 2012, 300–304 (2012)Google Scholar
  95. 95.
    O. Foley, M. Helfert, The development of an objective metric for the accessibility dimension of data quality. Innov. Inf. Technol. IIT, 11–15 (2008)Google Scholar
  96. 96.
    D.M. Strong, Y.W. Lee, R.Y. Wang, Data quality in context. Commun. ACM 40(5), 103–110 (1997)CrossRefGoogle Scholar
  97. 97.
    Y. Wand, R.Y. Wang, Anchoring data quality dimensions in ontological foundations. Commun. ACM 39(11), 86–95 (1996)CrossRefGoogle Scholar
  98. 98.
    O. Almutiry, G. Wills, A. Alwabel, R. Crowder, R. WaIters, Toward a framework for data quality in cloud-based health information system. Inf. Soc. (i-Society Int. Conf.) 2013, 153–157 (2013)Google Scholar
  99. 99.
    L. Su, S. Hu, S. Li, F. Liang, J. Gao, T.F. Abdelzaher, J. Han, Quality of information based data selection and transmission in wireless sensor networks. IEEE 33rd Real Time Syst. Symp. 2012, 327–338 (2012)Google Scholar
  100. 100.
    S. Daby, D. S. Turaga, and M. Schmidt, Managing and Mining Sensor Data, vol. 9781461463. Springer, New York, NY 2014Google Scholar
  101. 101.
    H. Banaee, M.U. Ahmed, A. Loutfi, Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges. Sensors (Switzerland) 13(12), 17472–17500 (2013)CrossRefGoogle Scholar
  102. 102.
    K. Kenda, Usage of the Kalman filter for data cleaning of sensor data, vol 2013 (2013), pp. 3–6Google Scholar
  103. 103.
    I Science, Applied quality: thinking information for the quality a framework about. Science 75, 864–877 (1998)Google Scholar
  104. 104.
    X. Lai, Q. Liu, X. Wei, W. Wang, G. Zhou, G. Han, A survey of body sensor networks. Sensors 13(5), 5406–5447 (2013)CrossRefGoogle Scholar
  105. 105.
    G. Jesus, A. Casimiro, A. Oliveira, A survey on data quality for dependable monitoring in wireless sensor networks. Sensors 17(9), 2010 (2017)CrossRefGoogle Scholar
  106. 106.
    C.C. Bellos, A. Papadopoulos, R. Rosso, D.I. Fotiadis, Extraction and analysis of features acquired by wearable sensors network, in Proc. IEEE/EMBS Reg. 8 Int. Conf. Inf. Technol. Appl. Biomed. ITAB, (2010)Google Scholar
  107. 107.
    F. Touati, R. Tabish, U-healthcare system: state-of-the-art review and challenges. J. Med. Syst. 37(3) (2013)Google Scholar
  108. 108.
    U. Hunkeler, P. Scotton, A quality-of-information-aware framework for data models in wireless sensor networks, in 2008 5th IEEE International Conference on Mobile Ad Hoc and Sensor Systems, (2008), pp. 742–747CrossRefGoogle Scholar
  109. 109.
    U. Varshney, Pervasive healthcare and wireless health monitoring. Mob. Networks Appl. 12(2–3), 113–127 (2007)CrossRefGoogle Scholar
  110. 110.
    V. Rafe, M. Hajvali, A reliable architectural style for designing pervasive healthcare systems (Springer, New York, NY, 2014), pp. 1–10Google Scholar
  111. 111.
    N.F. Ahmad, D.B. Hoang, M.H. Phung, Robust preprocessing for health care monitoring framework, in 11th IEEE Int. Conf. e-Health Networking, Appl. Serv. Heal. 2009, (2009), pp. 169–174Google Scholar
  112. 112.
    M. Kumar, Security issues and privacy concerns in the implementation of wireless body area network. Int. Conf. Inf. Technol. 2014, 58–62 (2014)Google Scholar
  113. 113.
    M. Raje, D. Mukhopadhyay, A survey on backup of data on remote server, pp. 1–4Google Scholar
  114. 114.
    F. Portela, M.F. Santos, M. Vilas-Boas, A pervasive approach to a real-time intelligent decision support system in intensive medicine. Commun. Comput. Inf. Sci. 272(CCIS), 368–381 (2013)Google Scholar
  115. 115.
    C. Röcker, M. Ziefle, and A. Holzinger, From Computer innovation to human integration: current trends and challenges for pervasive health technologies “Technical Innovations” Springer, LondonGoogle Scholar
  116. 116.
    G. Acampora, D.J. Cook, P. Rashidi, A.V. Vasilakos, Data analytics in pervasive health. Healthc. Data Anal., 533–576 (2015)Google Scholar
  117. 117.
    O. El-gayar, P. Timsina, N. Nawar, W. Eid, Mobile applications for diabetes self-management: status and potential. J. Diabetes Sci. Technol. 7(1), 247–262 (2013)CrossRefGoogle Scholar
  118. 118.
    R.Y. Wang, D.M. Strong, Beyond accuracy: what data quality means to data consumers. J. Manag. Inf. Syst. 12(4), 5–33 (1996)CrossRefGoogle Scholar
  119. 119.
    C. Fox, A. LEVITIN, T. REDMAN, The notion of data and its quality dimensions. Inf. Process. Manag. 30(I), 9–19 (1994)CrossRefGoogle Scholar
  120. 120.
    Canadian Institute for Health Information, CIHI Data Quality. Framework (CIHI, Ottawa, ON, 2009), pp. 3–128Google Scholar
  121. 121.
    M.G. Kahn, M.A. Raebel, J.M. Glanz, K. Riedlinger, J.F. Steiner, A pragmatic framework for single-site and multisite data quality assessment in electronic health record-based clinical research. Med. Care 50(0) (2012)CrossRefGoogle Scholar
  122. 122.
    S.T. Liaw, A. Rahimi, P. Ray, J. Taggart, S. Dennis, S. de Lusignan, B. Jalaludin, A.E.T. Yeo, A. Talaei-Khoei, Towards an ontology for data quality in integrated chronic disease management: a realist review of the literature. Int. J. Med. Inform. 82(1), 10–24 (2013)CrossRefGoogle Scholar
  123. 123.
    O. Almutiry, G. Wills, R. Crowder, Toward a framework for data quality in electronic health record (International Conference on Information Society, Toronto, ON, 2013)Google Scholar
  124. 124.
    I. Taleb, H.T. El Kassabi, M.A. Serhani, R. Dssouli, C. Bouhaddioui, Big data quality: a quality dimensions evaluation. 2016 Int Ieee Conf. Ubiquitous Intell. Comput. Adv. Trust. Comput. Scalable Comput. Commun. Cloud Big Data Comput. Internet People, Smart World Congr. 2016, 759–765 (2016)Google Scholar
  125. 125.
    M. Bobrowski, M. Marré, D. Yankelevich, A homogeneous framework to measure data quality. Fourth Conf. Inf. Qual. 1999, 115–124 (1999)Google Scholar
  126. 126.
    H. Viswanathan, B. Chen, D. Pompili, O. In, Research challenges in computation, communication, and context awareness for ubiquitous healthcare. IEEE Commun. Mag. 50(5), 92–99 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Geshwaree Huzooree
    • 1
    Email author
  • Kavi Kumar Khedo
    • 2
  • Noorjehan Joonas
    • 3
  1. 1.Department of Information TechnologyCurtin MauritiusMokaMauritius
  2. 2.Department of Digital TechnologiesUniversity of MauritiusReduitMauritius
  3. 3.Central Health Laboratory, Victoria HospitalMinistry of Health & Quality of LifeCandosMauritius

Personalised recommendations