Body Area Network (BAN) for Healthcare by Wireless Mesh Network (WMN)

  • Raluca Maria Aileni
  • George Suciu
  • Cristina Mihaela Balaceanu
  • Cristian Beceanu
  • Petrache Ana Lavinia
  • Carmen-Violeta Nadrag
  • Sever Pasca
  • Carlos Alberto Valderrama Sakuyama
  • Alexandru Vulpe
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)


This chapter presents the convergent aspects of wireless body area network (WBAN) topology, energy efficiency, and medical constraints related to the interference between invasive or non-invasive wearable medical devices and the electromagnetic field emitted by other devices (aggregators, Bluetooth or ZigBee, smartphone). Wireless short-range personal area networks based on IEEE 802.15.1 (Bluetooth) or IEEE 802.15.4 (ZigBee) standards are used in wearable body networks for communication. Moreover, the antennas using in wireless body area network (WBAN) must take in consideration the specific absorption rate (SAR) distributions on human body for electronic devices. For our research, we have chosen the star topology with a main board—central node and other sensors placed at a distance of different radii (owing to the need to be in correspondence with the anatomical region to be measured). The Wireless Bluetooth technology based on mesh network will enable the IoT because it allows for data transfer between biomedical sensors and the gateway.


Healthcare Body area network SAR Sensors IoT Biomedical Wireless technology 



This has been supported in part by UEFISCDI Romania and MCI through projects ESTABLISH, WINS@HI, EmoSpaces and TelMonAer, and funded in part by European Union’s Horizon 2020 research and innovation program under grant agreement No. 777996 (SealedGRID project) and No. 787002 (SAFECARE project).


  1. 1.
    D. Rathee, R. Savita, S.K. Chakarvarti, V.R. Singh, Recent trends in Wireless Body Area Network (WBAN) research and cognition based adaptive WBAN architecture for healthcare. J. Health Technol. 4(3), 239–244 (2014)CrossRefGoogle Scholar
  2. 2.
    R.K. Kachroo, R. Bajaj, A novel technique for optimized routing in wireless body area network using genetic algorithm. J. Telecommun. Electron. Comput. Eng. 10(2), (2015)Google Scholar
  3. 3.
    S. Sindhu, S. Vashisth, S.K. Chakarvarti, A review on Wireless Body Area Network (WBAN) for health monitoring system: implementation protocols. Commun. Appl. Electron. 4(7), 16–20 (2016)CrossRefGoogle Scholar
  4. 4.
    F. Hafez, F. Hesham, Design and implementation of wireless sensors network and cloud based telemedicine system for rural clinics and health centers. Int. J. Sci. Eng. Res. 6(2), 478 (2015)Google Scholar
  5. 5.
    J.Y. Khan, M.R. Yuce, Wireless Body Area Network (WBAN) for Medical Applications, New Developments in Biomedical Engineering (InTech, Rijeka, 2010)Google Scholar
  6. 6.
    A. Milenkovic, C. Otto, E. Jovanov, Wireless sensor networks for personal health monitoring: issues and an implementation. Comput Commun 29, 2521–2533 (2006)CrossRefGoogle Scholar
  7. 7.
    C. Chen, A. Knol, H.E. Wichman, A. Horsch, A review of three-layer wireless body sensor network systems in healthcare for continuous monitoring. J. Modern Internet Things (MIOT) 2(3), 24–34 (2013)Google Scholar
  8. 8.
    H.A. Mogaibel, M. Othman, S. Subramaniam, N.A.W.A. Hamid, High throughput path establishment for common traffic in wireless mesh networks, ed. By A. Krendzel. Wireless Mesh Networks - Efficient Link Scheduling, Channel Assignment and Network Planning Strategies, (InTech, Rijeka, 2012)Google Scholar
  9. 9.
    N.A. Benjamin, S. Sankaranarayana, Performance of wireless body sensor based mesh network for health application. Int. J. Comput. Informat. Syst. Industr. Manag. Appl. 2, 020–028 (2010)Google Scholar
  10. 10.
    A. Darwish, A.E. Hassanien, Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors 11(6), 5561–5595 (2011)CrossRefGoogle Scholar
  11. 11.
    A. Zamanian, C. Hardiman, Electromagnetic radiation and human health: a review of sources and effects, summit technical media. High Freq. Electron. 2005, 16–26 (2005)Google Scholar
  12. 12.
    A. Mahajan, M. Singh, Human health and electromagnetic radiations. Int. J. Eng. Innov. Technol. 1(6), 95–97 (2012)Google Scholar
  13. 13.
    B. Hocking, I.R. Gordon, H.L. Grain, G.E. Hatfield, Cancer incidence and mortality and proximity to TV towers. Med. J. Aust. 165(11), 601–605 (1996)Google Scholar
  14. 14.
    V.G. Khurana, C. Teo, M. Kundi, L. Hardell, M. Carlberg, Sep cell phones and brain tumors. Surg. Neurol. 72(3), 205–214 (2009)Google Scholar
  15. 15.
    F. Ozdemir, A. Kargi, Electromagnetic waves and human health, in Electromagnetic Waves, ed. by Z. Vitaliy (Ed), (InTech, Rijeka, 2011)Google Scholar
  16. 16.
    Y. Lin, H. Lee, M. Who, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti, K. Flautner, SODA: a low-power architecture for software radio, in 33rd International Symposium on Computer Architecture (ISCA’06) (2006), pp. 89–101Google Scholar
  17. 17.
    G. Mulligan, The 6LoWPAN architecture, in Proceedings of the 4th workshop on Embedded networked sensors (EmNets ’07) (ACM, 2007), pp. 78–82Google Scholar
  18. 18.
    I. Awolusia, E. Marks, M. Hallowell, Wearable technology for personalized construction safety monitoring and trending: Review of applicable devices. Autom. Constr. 85, 96–106 (2018)CrossRefGoogle Scholar
  19. 19.
    V. Gupta, D. Mohapatra, S.P. Park, A. Raghunathan, K. Roy, IMPACT: IMPrecise adders for low-power approximate computing, in IEEE/ACM International Symposium on Low Power Electronics and Design (2011), pp. 409–414Google Scholar
  20. 20.
    ANSES, Radiofrequency interference with medical devices. A technical information statement. IEEE Eng. Med. Biol. Mag. 17(3), 111–114 (1998)Google Scholar
  21. 21.
    T. Gee, Can-we-fix-wireless-in-health-care, in Medical Connectivity (2009),
  22. 22.
    Y.Q. He, S.W. Leung, Y.L. Diao, W.N. Sun, Y.M. Siu, P. Sinha, K.H. Chan, Impacts of radio frequency interference on human brain waves and neuro-psychological changes, in International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa (2015), pp. 257–261Google Scholar
  23. 23.
    M.R. Yuce, Implementation of wireless body area networks for healthcare systems. Sensors. Actuators A Phys. 162(1), 116–129 (2010)CrossRefGoogle Scholar
  24. 24.
    K. Jeevan, T.R. Haftu, Y.S. Soo, Fog computing-based smart health monitoring system deploying LoRa wireless communication. IETE Tech. Rev., 1–14 (2018)Google Scholar
  25. 25.
    A.V. Mbakop, A. Lambebo, L. Jayatilleke, S. Haghani, Implementation of a wireless body area network for healthcare monitoring, in Conference Proceedings (2013)Google Scholar
  26. 26.
    Y. Zhu, G.Y. Wei, Cloud no longer a silver bullet, edge to the rescue. arXiv:1802.05943 2018, arXiv:1802.05943v1 (2018)Google Scholar
  27. 27.
    M. Marjanovic, A. Antonic, I.P. Zarko, Edge computing architecture for mobile crowdsensing. IEEE Access. 6, 10662–10674 (2018)CrossRefGoogle Scholar
  28. 28.
    X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Networking 24(5), 2795–2808 (2016)CrossRefGoogle Scholar
  29. 29.
    S. Ullah, H. Higgins, B. Braem, B. Latre, C. Blondia, I. Moerman, S. Saleem, Z. Rahman, K.S. Kwak, A comprehensive survey of wireless body area networks: on PHY, MAC, and Network layers solutions. J. Med. Syst. 36(3), 1065–1094 (2012)CrossRefGoogle Scholar
  30. 30.
    D.P. Tobon, T.H. Falk, M. Maier, Context awareness in WBANs: a survey on medical and non-medical applications. Wireless Commun. IEEE 20(4), 30–37 (2013)CrossRefGoogle Scholar
  31. 31.
    A. Boulemtafes, N. Badache, Design of wearable health monitoring systems: an overview of techniques and technologies, in mHealth Ecosystems and Social Networks in Healthcare. Annals of Information Systems, ed. by A. Lazakidou, S. Zimeras, D. Iliopoulou, D. D. Koutsouris (Eds), vol. 20, (Springer, New York, NY, 2016)Google Scholar
  32. 32.
    P. Khan, M.A. Hussain, K.S. Kwak, Medical applications of wireless body area networks. Int. J. Digital Content Technol. Appl. 3(3), 185–193 (2009)Google Scholar
  33. 33.
    G. Acampora, D.J. Cook, P. Rashidi, A.V. Vasilakos, A survey on ambient intelligence in healthcare. Proc. IEEE 101(12), 2470–2494 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Raluca Maria Aileni
    • 1
  • George Suciu
    • 1
    • 2
  • Cristina Mihaela Balaceanu
    • 2
  • Cristian Beceanu
    • 2
  • Petrache Ana Lavinia
    • 2
  • Carmen-Violeta Nadrag
    • 2
  • Sever Pasca
    • 1
  • Carlos Alberto Valderrama Sakuyama
    • 3
  • Alexandru Vulpe
    • 1
    • 2
  1. 1.Faculty of Electronics, Telecommunication and Information TechnologyPolitehnica University of BucharestBucharestRomania
  2. 2.Beia Consult InternationalBucharestRomania
  3. 3.Electronics and Microelectronics DepartmentMons University of BucharestMonsBelgium

Personalised recommendations