Advertisement

Clinical Management of One-Lung Ventilation

  • Travis Schisler
  • Jens Lohser
Chapter

Abstract

One-lung ventilation (OLV) is a recognized and modifiable risk factor for acute lung injury. OLV needs to be individualized to the patient’s predicted body weight and their particular lung mechanics. Protective OLV is a combination of small, physiologic tidal volumes with consequently low ventilating pressures and routine, individualized PEEP to facilitate open lung ventilation. Ventilator-induced lung injury is preventable by minimizing driving pressure, which is a direct correlate of transpulmonary stress and strain. In patients at particular risk of lung injury, the use of permissive hypercapnia may facilitate a decrease in the mechanical strain onto the lung. Hypoxemia during one-lung ventilation is now rare and often secondary to alveolar de-recruitment in the face of hypoventilation. Management of hypoxemia requires a structured treatment algorithm.

Keywords

One-lung ventilation Protective ventilation Acute lung injury Postoperative respiratory complications Driving pressure Thoracic surgery 

References

  1. 1.
    Brodsky JB. The evolution of thoracic anesthesia. Thorac Surg Clin. 2005;15(1):1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Lohser J. Evidence-based management of one-lung ventilation. Anesthesiol Clin. 2008;26(2):241–72. vPubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Zeldin RA, Normandin D, Landtwing D, Peters RM. Postpneumonectomy pulmonary edema. J Thorac Cardiovasc Surg. 1984;87(3):359–65.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Licker M, Fauconnet P, Villiger Y, Tschopp JM. Acute lung injury and outcomes after thoracic surgery. Curr Opin Anaesthesiol. 2009;22(1):61–7.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Dulu A, Pastores SM, Park B, Riedel E, Rusch V, Halpern NA. Prevalence and mortality of acute lung injury and ARDS after lung resection. Chest. 2006;130(1):73–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3):818–24.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, et al. The berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012;38(10):1573–82.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Licker M, de Perrot M, Spiliopoulos A, Robert J, Diaper J, Chevalley C, Tschopp J-M. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97(6):1558–65.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Ruffini E, Parola A, Papalia E, Filosso PL, Mancuso M, Oliaro A, et al. Frequency and mortality of acute lung injury and acute respiratory distress syndrome after pulmonary resection for bronchogenic carcinoma. Eur J Cardiothorac Surg. 2001;20(1):30–6. discussion 36-7PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kutlu CA, Williams EA, Evans TW, Pastorino U, Goldstraw P. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Ann Thorac Surg. 2000;69(2):376–80.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Della Rocca G, Coccia C. Acute lung injury in thoracic surgery. Curr Opin Anaesthesiol. 2013;26(1):40–6.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Tang SS, Redmond K, Griffiths M, Ladas G, Goldstraw P, Dusmet M. The mortality from acute respiratory distress syndrome after pulmonary resection is reducing: a 10-year single institutional experience. Eur J Cardiothorac Surg. 2008;34(4):898–902.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Jordan S, Mitchell JA, Quinlan GJ, Goldstraw P, Evans TW. The pathogenesis of lung injury following pulmonary resection. Eur Respir J. 2000;15(4):790–9.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Tremblay LN, Slutsky AS. Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med. 2006;32(1):24–33.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338(6):347–54.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Determann RM, Royakkers A, Wolthuis EK, Vlaar AP, Choi G, Paulus F, et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit Care. 2010;14(1):R1.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Gajic O, Frutos-Vivar F, Esteban A, Hubmayr RD, Anzueto A. Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive Care Med. 2005;31(7):922–6.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Gajic O, Dara SI, Mendez JL, Adesanya AO, Festic E, Caples SM, et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;32(9):1817–24.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Neto AS, Simonis FD, Barbas CS, Biehl M, Determann RM, Elmer J, et al. Lung-protective ventilation with low tidal volumes and the occurrence of pulmonary complications in patients without acute respiratory distress syndrome: a systematic review and individual patient data analysis. Crit Care Med. 2015;43(10):2155–63.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Silva PL, Negrini D, Macêdo Rocco PR. Mechanisms of ventilator-induced lung injury in healthy lungs. Best Pract Res Clin Anaesthesiol. 2015;29(3):301–13.PubMedCrossRefGoogle Scholar
  21. 21.
    Serpa Neto A, Hemmes SN, Barbas CS, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: a systematic review and meta-analysis. Lancet Respir Med. 2014;2(12):1007–15.PubMedCrossRefGoogle Scholar
  22. 22.
    Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369(5):428–37.PubMedCrossRefGoogle Scholar
  23. 23.
    Hemmes SN, Serpa Neto A, Schultz MJ. Intraoperative ventilatory strategies to prevent postoperative pulmonary complications: a meta-analysis. Curr Opin Anaesthesiol. 2013;26(2):126–33.PubMedCrossRefGoogle Scholar
  24. 24.
    Serpa Neto A, Hemmes SNT, Barbas CSV, Beiderlinden M, Biehl M, Binnekade JM, et al. Protective versus conventional ventilation for surgery. Anesthesiology. 2015;123(1):66–78.PubMedCrossRefGoogle Scholar
  25. 25.
    Levin MA, McCormick PJ, Lin HM, Hosseinian L, Fischer GW. Low intraoperative tidal volume ventilation with minimal PEEP is associated with increased mortality. Br J Anaesth. 2014;113(1):97–108.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Yang M, Ahn HJ, Kim K, Kim JA, Yi CA, Kim MJ, Kim HJ. Does a protective ventilation strategy reduce the risk of pulmonary complications after lung cancer surgery?: a randomized controlled trial. Chest. 2011;139(3):530–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Blank RS, Colquhoun DA, Durieux ME, Kozower BD, McMurry TL, Bender SP, Naik BI. Management of one-lung ventilation: impact of tidal volume on complications after thoracic surgery. Anesthesiology. 2016;124(6):1286–95.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Shen B. Low tidal volume ventilation in the operating room— where are we now? Anesthesia Patient Safety Foundation Newsletter. 2016:1–4.Google Scholar
  29. 29.
    Lohser J, Slinger P. Lung injury after one-lung ventilation: a review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung. Anesth Analg. 2015;121(2):302–18.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Padley SP, Jordan SJ, Goldstraw P, Wells AU, Hansell DM. Asymmetric ARDS following pulmonary resection: CT findings initial observations. Radiology. 2002;223(2):468–73.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Yin K, Gribbin E, Emanuel S, Orndorff R, Walker J, Weese J, Fallahnejad M. Histochemical alterations in one lung ventilation. J Surg Res. 2007;137(1):16–20.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Kozian A, Schilling T, Fredén F, Maripuu E, Röcken C, Strang C, et al. One-lung ventilation induces hyperperfusion and alveolar damage in the ventilated lung: an experimental study. Br J Anaesth. 2008;100(4):549–59.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Funakoshi T, Ishibe Y, Okazaki N, Miura K, Liu R, Nagai S, Minami Y. Effect of re-expansion after short-period lung collapse on pulmonary capillary permeability and pro-inflammatory cytokine gene expression in isolated rabbit lungs. Br J Anaesth. 2004;92(4):558–63.PubMedCrossRefGoogle Scholar
  34. 34.
    Schilling T, Kozian A, Huth C, Bühling F, Kretzschmar M, Welte T, Hachenberg T. The pulmonary immune effects of mechanical ventilation in patients undergoing thoracic surgery. Anesth Analg. 2005;101(4):957–65. table of contentsPubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Michelet P, D'Journo XB, Roch A, Doddoli C, Marin V, Papazian L, et al. Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology. 2006;105(5):911–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Sentürk M. New concepts of the management of one-lung ventilation. Curr Opin Anaesthesiol. 2006;19(1):1–4.PubMedCrossRefGoogle Scholar
  37. 37.
    De Conno E, Steurer MP, Wittlinger M, Zalunardo MP, Weder W, Schneiter D, et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology. 2009;110(6):1316–26.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Giraud O, Molliex S, Rolland C, Leçon-Malas V, Desmonts JM, Aubier M, Dehoux M. Halogenated anesthetics reduce interleukin-1beta-induced cytokine secretion by rat alveolar type II cells in primary culture. Anesthesiology. 2003;98(1):74–81.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Erturk E, Topaloglu S, Dohman D, Kutanis D, Beşir A, Demirci Y, et al. The comparison of the effects of sevoflurane inhalation anesthesia and intravenous propofol anesthesia on oxidative stress in one lung ventilation. Biomed Res Int. 2014;2014:360936.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Chappell D, Heindl B, Jacob M, Annecke T, Chen C, Rehm M, et al. Sevoflurane reduces leukocyte and platelet adhesion after ischemia-reperfusion by protecting the endothelial glycocalyx. Anesthesiology. 2011;115(3):483–91.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Casanova J, Simon C, Vara E, Sanchez G, Rancan L, Abubakra S, et al. Sevoflurane anesthetic preconditioning protects the lung endothelial glycocalyx from ischemia reperfusion injury in an experimental lung autotransplant model. J Anesth. 2016;30(5):755–62.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Schilling T, Kozian A, Kretzschmar M, Huth C, Welte T, Bühling F, et al. Effects of propofol and desflurane anaesthesia on the alveolar inflammatory response to one-lung ventilation. Br J Anaesth. 2007;99(3):368–75.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Schilling T, Kozian A, Senturk M, Huth C, Reinhold A, Hedenstierna G, Hachenberg T. Effects of volatile and intravenous anesthesia on the alveolar and systemic inflammatory response in thoracic surgical patients. Anesthesiology. 2011;115(1):65–74.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Cohen E. Management of one-lung ventilation. Anesthesiol Clin North Am. 2001;19(3):475–95. viCrossRefGoogle Scholar
  45. 45.
    Brodsky JB, Fitzmaurice B. Modern anesthetic techniques for thoracic operations. World J Surg. 2001;25(2):162–6.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    BENDIXEN HH, HEDLEY-WHYTE J, LAVER MB. Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation. A concept of atelectasis. N Engl J Med. 1963;269:991–6.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Katz JA, Laverne RG, Fairley HB, Thomas AN. Pulmonary oxygen exchange during endobronchial anesthesia: effect of tidal volume and PEEP. Anesthesiology. 1982;56(3):164–71.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Flacke JW, Thompson DS, Read RC. Influence of tidal volume and pulmonary artery occlusion on arterial oxygenation during endobronchial anesthesia. South Med J. 1976;69(5):619–26.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kozian A, Schilling T, Schütze H, Senturk M, Hachenberg T, Hedenstierna G. Ventilatory protective strategies during thoracic surgery: effects of alveolar recruitment maneuver and low-tidal volume ventilation on lung density distribution. Anesthesiology. 2011;114(5):1025–35.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    van der Werff YD, van der Houwen HK, Heijmans PJ, Duurkens VA, Leusink HA, van Heesewijk HP, de Boer A. Postpneumonectomy pulmonary edema. A retrospective analysis of incidence and possible risk factors. Chest. 1997;111(5):1278–84.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Fernández-Pérez ER, Keegan MT, Brown DR, Hubmayr RD, Gajic O. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105(1):14–8.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Neustein S. Association of high tidal volume with postpneumonectomy failure. Anesthesiology. 2007;106(4):875–6.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Jeon K, Yoon JW, Suh GY, Kim J, Kim K, Yang M, et al. Risk factors for post-pneumonectomy acute lung injury/acute respiratory distress syndrome in primary lung cancer patients. Anaesth Intensive Care. 2009;37(1):14–9.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Gama de Abreu M, Heintz M, Heller A, Széchényi R, Albrecht DM, Koch T. One-lung ventilation with high tidal volumes and zero positive end-expiratory pressure is injurious in the isolated rabbit lung model. Anesth Analg. 2003;96(1):220–8. table of contents.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Kuzkov VV, Suborov EV, Kirov MY, Kuklin VN, Sobhkhez M, Johnsen S, et al. Extravascular lung water after pneumonectomy and one-lung ventilation in sheep. Crit Care Med. 2007;35(6):1550–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Qutub H, El-Tahan MR, Mowafi HA, El Ghoneimy YF, Regal MA, Al Saflan AA. Effect of tidal volume on extravascular lung water content during one-lung ventilation for video-assisted thoracoscopic surgery: a randomised, controlled trial. Eur J Anaesthesiol. 2014;31:466.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Chiumello D, Pristine G, Slutsky AS. Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;160(1):109–16.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Cepkova M, Brady S, Sapru A, Matthay MA, Church G. Biological markers of lung injury before and after the institution of positive pressure ventilation in patients with acute lung injury. Crit Care. 2006;10(5):R126.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Parsons PE, Eisner MD, Thompson BT, Matthay MA, Ancukiewicz M, Bernard GR, et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 2005;33(1):1–6. discussion 230-2PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Wrigge H, Uhlig U, Zinserling J, Behrends-Callsen E, Ottersbach G, Fischer M, et al. The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth Analg. 2004;98(3):775–81.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Boyle NH, Pearce A, Hunter D, Owen WJ, Mason RC. Intraoperative scanning laser doppler flowmetry in the assessment of gastric tube perfusion during esophageal resection. J Am Coll Surg. 1999;188(5):498–502.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Licker M, Diaper J, Villiger Y, Spiliopoulos A, Licker V, Robert J, Tschopp JM. Impact of intraoperative lung-protective interventions in patients undergoing lung cancer surgery. Crit Care. 2009;13(2):R41.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Tusman G, Böhm SH, Sipmann FS, Maisch S. Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia. Anesth Analg. 2004;98(6):1604–9. table of contentsPubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Hoftman N, Eikermann E, Shin J, Buckley J, Navab K, Abtin F, et al. Utilizing forced vital capacity to predict low lung compliance and select intraoperative tidal volume during thoracic surgery. Anesth Analg. 2017;125:1922.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Schultz MJ, Haitsma JJ, Slutsky AS, Gajic O. What tidal volumes should be used in patients without acute lung injury? Anesthesiology. 2007;106(6):1226–31.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Klingstedt C, Hedenstierna G, Baehrendtz S, Lundqvist H, Strandberg A, Tokics L, Brismar B. Ventilation-perfusion relationships and atelectasis formation in the supine and lateral positions during conventional mechanical and differential ventilation. Acta Anaesthesiol Scand. 1990;34(6):421–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Mase K, Noguchi T, Tagami M, Imura S, Tomita K, Monma M, et al. Compression of the lungs by the heart in supine, side-lying, semi-prone positions. J Phys Ther Sci. 2016;28(9):2470–3.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ducros L, Moutafis M, Castelain MH, Liu N, Fischler M. Pulmonary air trapping during two-lung and one-lung ventilation. J Cardiothorac Vasc Anesth. 1999;13(1):35–9.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Slinger PD, Hickey DR. The interaction between applied PEEP and auto-peep during one-lung ventilation. J Cardiothorac Vasc Anesth. 1998;12(2):133–6.CrossRefGoogle Scholar
  70. 70.
    Caramez MP, Borges JB, Tucci MR, Okamoto VN, Carvalho CR, Kacmarek RM, et al. Paradoxical responses to positive end-expiratory pressure in patients with airway obstruction during controlled ventilation. Crit Care Med. 2005;33(7):1519–28.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Putensen C, Wrigge H. Tidal volumes in patients with normal lungs: one for all or the less, the better? Anesthesiology. 2007;106(6):1085–7.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Slinger PD, Kruger M, McRae K, Winton T. Relation of the static compliance curve and positive end-expiratory pressure to oxygenation during one-lung ventilation. Anesthesiology. 2001;95(5):1096–102.CrossRefGoogle Scholar
  73. 73.
    Valenza F, Ronzoni G, Perrone L, Valsecchi M, Sibilla S, Nosotti M, et al. Positive end-expiratory pressure applied to the dependent lung during one-lung ventilation improves oxygenation and respiratory mechanics in patients with high FEV1. Eur J Anaesthesiol. 2004;21(12):938–43.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Ren Y, Peng ZL, Xue QS, Yu BW. The effect of timing of application of positive end-expiratory pressure on oxygenation during one-lung ventilation. Anaesth Intensive Care. 2008;36(4):544–8.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Bardoczky GI, d'Hollander AA, Cappello M, Yernault JC. Interrupted expiratory flow on automatically constructed flow-volume curves may determine the presence of intrinsic positive end-expiratory pressure during one-lung ventilation. Anesth Analg. 1998;86(4):880–4.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Henderson WR, Chen L, Amato MB, Brochard LJ. Fifty years of research in ARDS. Respiratory mechanics in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;196:822.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Tusman G, Böhm SH. Prevention and reversal of lung collapse during the intra-operative period. Best Pract Res Clin Anaesthesiol. 2010;24(2):183–97.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Ferrando C, Mugarra A, Gutierrez A, Carbonell JA, García M, Soro M, et al. Setting individualized positive end-expiratory pressure level with a positive end-expiratory pressure decrement trial after a recruitment maneuver improves oxygenation and lung mechanics during one-lung ventilation. Anesth Analg. 2014;118(3):657–65.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Misthos P, Katsaragakis S, Theodorou D, Milingos N, Skottis I. The degree of oxidative stress is associated with major adverse effects after lung resection: a prospective study. Eur J Cardiothorac Surg. 2006;29(4):591–5.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Douzinas EE, Kollias S, Tiniakos D, Evangelou E, Papalois A, Rapidis AD, et al. Hypoxemic reperfusion after 120 mins of intestinal ischemia attenuates the histopathologic and inflammatory response. Crit Care Med. 2004;32(11):2279–83.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Duggan M, Kavanagh BP. Atelectasis in the perioperative patient. Curr Opin Anaesthesiol. 2007;20(1):37–42.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Bardoczky GI, Szegedi LL, dHollander AA, Moures JM, de Francquen P, Yernault JC. Two-lung and one-lung ventilation in patients with chronic obstructive pulmonary disease: the effects of position and fio2. Anesth Analg. 2000;90(1):35.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Ko R, McRae K, Darling G, Waddell TK, McGlade D, Cheung K, et al. The use of air in the inspired gas mixture during two-lung ventilation delays lung collapse during one-lung ventilation. Anesth Analg. 2009;108(4):1092–6.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Edmark L, Kostova-Aherdan K, Enlund M, Hedenstierna G. Optimal oxygen concentration during induction of general anesthesia. Anesthesiology. 2003;98(1):28–33.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Kregenow DA, Rubenfeld GD, Hudson LD, Swenson ER. Hypercapnic acidosis and mortality in acute lung injury. Crit Care Med. 2006;34(1):1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Lang CJ, Barnett EK, Doyle IR. Stretch and CO2 modulate the inflammatory response of alveolar macrophages through independent changes in metabolic activity. Cytokine. 2006;33(6):346–51.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Sticher J, Müller M, Scholz S, Schindler E, Hempelmann G. Controlled hypercapnia during one-lung ventilation in patients undergoing pulmonary resection. Acta Anaesthesiol Scand. 2001;45(7):842–7.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Zollinger A, Zaugg M, Weder W, Russi EW, Blumenthal S, Zalunardo MP, et al. Video-assisted thoracoscopic volume reduction surgery in patients with diffuse pulmonary emphysema: gas exchange and anesthesiological management. Anesth Analg. 1997;84(4):845–51.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Morisaki H, Serita R, Innami Y, Kotake Y, Takeda J. Permissive hypercapnia during thoracic anaesthesia. Acta Anaesthesiol Scand. 1999;43(8):845–9.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Balanos GM, Talbot NP, Dorrington KL, Robbins PA. Human pulmonary vascular response to 4 h of hypercapnia and hypocapnia measured using Doppler echocardiography. J Appl Physiol (1985). 2003;94(4):1543–51.CrossRefGoogle Scholar
  91. 91.
    Robinson RJ, Shennib H, Noirclerc M. Slow-rate, high-pressure ventilation: a method of management of difficult transplant recipients during sequential double lung transplantation for cystic fibrosis. J Heart Lung Transplant. 1994;13(5):779–84.PubMedGoogle Scholar
  92. 92.
    Szegedi LL, Barvais L, Sokolow Y, Yernault JC, d'Hollander AA. Intrinsic positive end-expiratory pressure during one-lung ventilation of patients with pulmonary hyperinflation. Influence of low respiratory rate with unchanged minute volume. Br J Anaesth. 2002;88(1):56–60.PubMedCrossRefGoogle Scholar
  93. 93.
    Slinger PD, Lesiuk L. Flow resistances of disposable double-lumen, single-lumen, and univent tubes. J Cardiothorac Vasc Anesth. 1998;12(2):142–4.PubMedCrossRefGoogle Scholar
  94. 94.
    Fernández-Pérez ER, Sprung J, Afessa B, Warner DO, Vachon CM, Schroeder DR, et al. Intraoperative ventilator settings and acute lung injury after elective surgery: a nested case control study. Thorax. 2009;64(2):121–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Chiumello D, Carlesso E, Brioni M, Cressoni M. Airway driving pressure and lung stress in ARDS patients. Crit Care. 2016;20:276.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Helwani MA, Saied NN. Intraoperative plateau pressure measurement using modern anesthesia machine ventilators. Can J Anaesth. 2013;60(4):404–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Neto AS, Hemmes SNT, Barbas CSV, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4(4):272–80.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Nichols D, Haranath S. Pressure control ventilation. Crit Care Clin. 2007;23(2):183–99. viii-ixPubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Tuğrul M, Camci E, Karadeniz H, Sentürk M, Pembeci K, Akpir K. Comparison of volume controlled with pressure controlled ventilation during one-lung anaesthesia. Br J Anaesth. 1997;79(3):306–10.PubMedCrossRefGoogle Scholar
  101. 101.
    Sentürk NM, Dilek A, Camci E, Sentürk E, Orhan M, Tuğrul M, Pembeci K. Effects of positive end-expiratory pressure on ventilatory and oxygenation parameters during pressure-controlled one-lung ventilation. J Cardiothorac Vasc Anesth. 2005;19(1):71–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Unzueta MC, Casas JI, Moral MV. Pressure-controlled versus volume-controlled ventilation during one-lung ventilation for thoracic surgery. Anesth Analg. 2007;104(5):1029–33. tables of contentsPubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Leong LM, Chatterjee S, Gao F. The effect of positive end expiratory pressure on the respiratory profile during one-lung ventilation for thoracotomy. Anaesthesia. 2007;62(1):23–6.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Choi YS, Shim JK, Na S, Hong SB, Hong YW, Oh YJ. Pressure-controlled versus volume-controlled ventilation during one-lung ventilation in the prone position for robot-assisted esophagectomy. Surg Endosc. 2009;23(10):2286–91.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Heimberg C, Winterhalter M, Strüber M, Piepenbrock S, Bund M. Pressure-controlled versus volume-controlled one-lung ventilation for MIDCAB. Thorac Cardiovasc Surg. 2006;54(8):516–20.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Pardos PC, Garutti I, Piñeiro P, Olmedilla L, de la Gala F. Effects of ventilatory mode during one-lung ventilation on intraoperative and postoperative arterial oxygenation in thoracic surgery. J Cardiothorac Vasc Anesth. 2009;23(6):770–4.Google Scholar
  107. 107.
    Ihra G, Gockner G, Kashanipour A, Aloy A. High-frequency jet ventilation in european and north american institutions: developments and clinical practice. Eur J Anaesthesiol. 2000;17(7):418–30.PubMedCrossRefGoogle Scholar
  108. 108.
    Abe K, Oka J, Takahashi H, Funatsu T, Fukuda H, Miyamoto Y. Effect of high-frequency jet ventilation on oxygenation during one-lung ventilation in patients undergoing thoracic aneurysm surgery. J Anesth. 2006;20(1):1–5.PubMedCrossRefGoogle Scholar
  109. 109.
    Knüttgen D, Zeidler D, Vorweg M, Doehn M. Unilateral high-frequency jet ventilation supporting one-lung ventilation during thoracic surgical procedures. Anaesthesist. 2001;50(8):585–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Durkin C, Lohser J. Oxygenation and ventilation strategies for patients undergoing lung resection surgery after prior lobectomy or pneumonectomy. Curr Anesthesiol Rep. 2016;6(2):135–41.CrossRefGoogle Scholar
  111. 111.
    Misiolek H, Knapik P, Swanevelder J, Wyatt R, Misiolek M. Comparison of double-lung jet ventilation and one-lung ventilation for thoracotomy. Eur J Anaesthesiol. 2008;25(1):15–21.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Buise M, van Bommel J, van Genderen M, Tilanus H, van Zundert A, Gommers D. Two-lung high-frequency jet ventilation as an alternative ventilation technique during transthoracic esophagectomy. J Cardiothorac Vasc Anesth. 2009;23(4):509–12.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Lentz CW, Peterson HD. Smoke inhalation is a multilevel insult to the pulmonary system. Curr Opin Pulm Med. 1997;3(3):221–6.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Reper P, Dankaert R, van Hille F, van Laeke P, Duinslaeger L, Vanderkelen A. The usefulness of combined high-frequency percussive ventilation during acute respiratory failure after smoke inhalation. Burns. 1998;24(1):34–8.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Velmahos GC, Chan LS, Tatevossian R, Cornwell EE, Dougherty WR, Escudero J, Demetriades D. High-frequency percussive ventilation improves oxygenation in patients with ARDS. Chest. 1999;116(2):440–6.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Lucangelo U, Antonaglia V, Zin WA, Confalonieri M, Borelli M, Columban M, et al. High-frequency percussive ventilation improves perioperatively clinical evolution in pulmonary resection. Crit Care Med. 2009;37(5):1663–9.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol. 1970;28(5):596–608.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Duggan M, McCaul CL, McNamara PJ, Engelberts D, Ackerley C, Kavanagh BP. Atelectasis causes vascular leak and lethal right ventricular failure in uninjured rat lungs. Am J Respir Crit Care Med. 2003;167(12):1633–40.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Tusman G, Böhm SH, Suarez-Sipmann F. Dead space during one-lung ventilation. Curr Opin Anesthesiol. 2015;28(1):10–7.CrossRefGoogle Scholar
  120. 120.
    Cinnella G, Grasso S, Natale C, Sollitto F, Cacciapaglia M, Angiolillo M, et al. Physiological effects of a lung-recruiting strategy applied during one-lung ventilation. Acta Anaesthesiol Scand. 2008;52(6):766–75.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Vieillard-Baron A, Charron C, Jardin F. Lung recruitment or lung overinflation maneuvers? Intensive Care Med. 2006;32(1):177–8.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Garutti I, Martinez G, Cruz P, Piñeiro P, Olmedilla L, de la Gala F. The impact of lung recruitment on hemodynamics during one-lung ventilation. J Cardiothorac Vasc Anesth. 2009;23(4):506–8.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Koh WJ, Suh GY, Han J, Lee SH, Kang EH, Chung MP, et al. Recruitment maneuvers attenuate repeated derecruitment-associated lung injury. Crit Care Med. 2005;33(5):1070–6.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Suh GY, Koh Y, Chung MP, An CH, Kim H, Jang WY, et al. Repeated derecruitments accentuate lung injury during mechanical ventilation. Crit Care Med. 2002;30(8):1848–53.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Farias LL, Faffe DS, Xisto DG, Santana MC, Lassance R, Prota LF, et al. Positive end-expiratory pressure prevents lung mechanical stress caused by recruitment/derecruitment. J Appl Physiol (1985). 2005;98(1):53–61.CrossRefGoogle Scholar
  126. 126.
    Meade MO, Cook DJ, Griffith LE, Hand LE, Lapinsky SE, Stewart TE, et al. A study of the physiologic responses to a lung recruitment maneuver in acute lung injury and acute respiratory distress syndrome. Respir Care. 2008;53(11):1441–9.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Sivrikoz MC, Tunçözgür B, Cekmen M, Bakir K, Meram I, Koçer E, et al. The role of tissue reperfusion in the reexpansion injury of the lungs. Eur J Cardiothorac Surg. 2002;22(5):721–7.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Ojima H, Kuwano H, Kato H, Miyazaki T, Nakajima M, Sohda M, Tsukada K. Relationship between cytokine response and temporary ventilation during one-lung ventilation in esophagectomy. Hepato-Gastroenterology. 2007;54(73):111–5.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Hansen LK, Koefoed-Nielsen J, Nielsen J, Larsson A. Are selective lung recruitment maneuvers hemodynamically safe in severe hypovolemia? An experimental study in hypovolemic pigs with lobar collapse. Anesth Analg. 2007;105(3):729–34.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Mahfood S, Hix WR, Aaron BL, Blaes P, Watson DC. Reexpansion pulmonary edema. Ann Thorac Surg. 1988;45(3):340–5.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Tekinbas C, Ulusoy H, Yulug E, Erol MM, Alver A, Yenilmez E, et al. One-lung ventilation: for how long? J Thorac Cardiovasc Surg. 2007;134(2):405–10.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Fernandez-Bustamante A, Wood CL, Tran ZV, Moine P. Intraoperative ventilation: incidence and risk factors for receiving large tidal volumes during general anesthesia. BMC Anesthesiol. 2011;11:22.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Hurford WE, Kolker AC, Strauss HW. The use of ventilation/perfusion lung scans to predict oxygenation during one-lung anesthesia. Anesth. 1987;67(5):841–3.CrossRefGoogle Scholar
  134. 134.
    Slinger P, Suissa S, Adam J, Triolet W. Predicting arterial oxygenation during one-lung ventilation with continuous positive airway pressure to the nonventilated lung. J Cardiothorac Anesth. 1990;4(4):436–40.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Yamamoto Y, Watanabe S, Kano T. Gradient of bronchial end-tidal CO2 during two-lung ventilation in lateral decubitus position is predictive of oxygenation disorder during subsequent one-lung ventilation. J Anesth. 2009;23(2):192–7.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Fukuoka N, Iida H, Akamatsu S, Nagase K, Iwata H, Dohi S. The association between the initial end-tidal carbon dioxide difference and the lowest arterial oxygen tension value obtained during one-lung anesthesia with propofol or sevoflurane. J Cardiothorac Vasc Anesth. 2009;23(6):775–9.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Brodsky JB, Lemmens HJ. Left double-lumen tubes: clinical experience with 1,170 patients. J Cardiothorac Vasc Anesth. 2003;17(3):289–98.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Ehrenfeld JM, Walsh JL, Sandberg WS. Right- and left-sided mallinckrodt double-lumen tubes have identical clinical performance. Anesth Analg. 2008;106(6):1847–52.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Baraka AS, Taha SK, Yaacoub CI. Alarming hypoxemia during one-lung ventilation in a patient with respiratory bronchiolitis-associated interstitial lung disease. Can J Anesth. 2003;50(4):411–4.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Russell WJ. Intermittent positive airway pressure to manage hypoxia during one-lung anaesthesia. Anaesth Intensive Care. 2009;37(3):432–4.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Jung DM, Ahn HJ, Jung SH, Yang M, Kim JA, Shin SM, Jeon S. Apneic oxygen insufflation decreases the incidence of hypoxemia during one-lung ventilation in open and thoracoscopic pulmonary lobectomy: a randomized controlled trial. J Thorac Cardiovasc Surg. 2017;154:360.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Ku CM, Slinger P, Waddell TK. A novel method of treating hypoxemia during one-lung ventilation for thoracoscopic surgery. J Cardiothorac Vasc Anesth. 2009;23(6):850–2.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Lohser J, McLean SR. Thoracoscopic wedge resection of the lung using high-frequency jet ventilation in a postpneumonectomy patient. A&A Case Reports. 2013;1:39–41.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Mierdl S, Meininger D, Dogan S, Wimmer-Greinecker G, Westphal K, Bremerich DH, Byhahn C. Does poor oxygenation during one-lung ventilation impair aerobic myocardial metabolism in patients with symptomatic coronary artery disease? Interact Cardiovasc Thorac Surg. 2007;6(2):209–13.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Casati A, Fanelli G, Pietropaoli P, Proietti R, Tufano R, Danelli G, et al. Continuous monitoring of cerebral oxygen saturation in elderly patients undergoing major abdominal surgery minimizes brain exposure to potential hypoxia. Anesth Analg. 2005;101(3):740–7.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Murkin JM, Adams SJ, Novick RJ, Quantz M, Bainbridge D, Iglesias I, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg. 2007;104(1):51–8.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Tobias JD, Johnson GA, Rehman S, Fisher R, Caron N. Cerebral oxygenation monitoring using near infrared spectroscopy during one-lung ventilation in adults. J Minim Access Surg. 2008;4(4):104.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Iwata M, Inoue S, Kawaguchi M, Takahama M, Tojo T, Taniguchi S, Furuya H. Jugular bulb venous oxygen saturation during one-lung ventilation under sevoflurane- or propofol-based anesthesia for lung surgery. J Cardiothorac Vasc Anesth. 2008;22(1):71–6.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Van Hemelrijck J, Fitch W, Mattheussen M, Van Aken H, Plets C, Lauwers T. Effect of propofol on cerebral circulation and autoregulation in the baboon. Anesth Analg. 1990;71(1):49–54.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Vandesteene A, Trempont V, Engelman E, Deloof T, Focroul M, Schoutens A, Rood M. Effect of propofol on cerebral blood flow and metabolism in man. Anaesthesia. 1988;43(s1):42–3.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Kazan R, Bracco D, Hemmerling TM. Reduced cerebral oxygen saturation measured by absolute cerebral oximetry during thoracic surgery correlates with postoperative complications. Br J Anaesth. 2009;103(6):811–6.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Yuluğ E, Tekinbas C, Ulusoy H, Alver A, Yenilmez E, Aydin S, et al. The effects of oxidative stress on the liver and ileum in rats caused by one-lung ventilation. J Surg Res. 2007;139(2):253–60.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Pompeo E. State of the art and perspectives in non-intubated thoracic surgery. Ann Transl Med. 2014;2(11):106.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Tacconi F, Pompeo E. Non-intubated video-assisted thoracic surgery: where does evidence stand? J Thorac Dis. 2016;8(Suppl 4):S364–75.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Al-Abdullatief M, Wahood A, Al-Shirawi N, Arabi Y, Wahba M, Al-Jumah M, et al. Awake anaesthesia for major thoracic surgical procedures: an observational study. Eur J Cardiothorac Surg. 2007;32(2):346–50.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Pompeo E, Sorge R, Akopov A, Congregado M, Grodzki T, ESTS Non-intubated Thoracic Surgery Working Group. Non-intubated thoracic surgery-a survey from the european society of thoracic surgeons. Ann Transl Med. 2015;3(3):37.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology, Pharmacology, and TherapeuticsUniversity of British Columbia, Vancouver General HospitalVancouverCanada

Personalised recommendations