Advertisement

Postoperative Respiratory Failure and Treatment

  • Wendy Smith
  • Alan Finley
  • James RamsayEmail author
Chapter

Abstract

After thoracic surgery lobar atelectasis, pneumonia, or the need for more than 24 h of mechanical ventilation occurs with an incidence of 22–25%, while respiratory failure requiring mechanical ventilation for more than 48 h occurs 3–10% of the time. These severe complications occur more frequently in patients undergoing more major procedures or resections such as esophagogastrectomy, lung volume reduction, and pneumonectomy. Preoperative risk factors as discussed in Chap. 2 are a major determinant of postoperative respiratory failure; intra- and postoperative complications such as atelectasis, pulmonary edema, and mechanical complications (e.g., bronchopleural fistula, lung torsion, pneumothorax) are also contributing factors. Measures to prevent or reduce atelectasis, to help mobilize secretions, and provision of adequate analgesia are essential to reduce respiratory deterioration after thoracic surgery. When respiratory failure appears to be developing, less invasive modes of respiratory assist such as high-flow nasal cannula or facemask continuous positive-pressure or bi-level support may reduce the need for intubation. When mechanical ventilation is required, a lung-protective mode with reduced tidal volumes and adequate PEEP should be employed. This is especially true when acute respiratory distress syndrome (ARDS) occurs, a complication with high mortality. Tracheostomy, performed when ventilator weaning appears to be unlikely within 7–10 days, can provide significant improvement in patient comfort and reduced need for sedation, facilitating mobility and weaning.

Keywords

Thoracic surgery, Postoperative complications Respiratory failure, Postoperative Acute respiratory distress syndrome, Postoperative 

References

  1. 1.
    Hirschler-Schulte CJ, Hylkema BS, Meyer RW. Mechanical ventilation for acute postoperative respiratory failure after surgery for bronchial carcinoma. Thorax. 1985;40(5):387–90.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Busch E, et al. Pulmonary complications in patients undergoing thoracotomy for lung carcinoma. Chest. 1994;105(3):760–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Stephan F, et al. Pulmonary complications following lung resection: a comprehensive analysis of incidence and possible risk factors. Chest. 2000;118(5):1263–70.CrossRefPubMedGoogle Scholar
  4. 4.
    Wada H, et al. Thirty-day operative mortality for thoracotomy in lung cancer. J Thorac Cardiovasc Surg. 1998;115(1):70–3.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Harpole DH Jr, et al. Prognostic models of thirty-day mortality and morbidity after major pulmonary resection. J Thorac Cardiovasc Surg. 1999;117(5):969–79.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Harpole DH, et al. Prospective analysis of pneumonectomy: risk factors for major morbidity and cardiac dysrhythmias. Ann Thorac Surg. 1996;61(3):977–82.CrossRefPubMedGoogle Scholar
  7. 7.
    Kane RD, Rasanene J. Hypoxemia. In: Kirby RR, Gravenstein N, editors. Clinical anesthesia practice. Philadelphia: WB Saunders Company; 1994. p. 782.Google Scholar
  8. 8.
    West JB. Pulmonary pathophysiology, the essentials. 3rd ed. Baltimore: Williams and Wilkins; 1977.Google Scholar
  9. 9.
    Hagen PT, Scholz DG, Edwards WD. Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc. 1984;59(1):17–20.CrossRefGoogle Scholar
  10. 10.
    Dewan NA, et al. Persistent hypoxemia due to patent foramen ovale in a patient with adult respiratory distress syndrome. Chest. 1986;89(4):611–3.CrossRefPubMedGoogle Scholar
  11. 11.
    Vaughn GC, Downs JB. Perioperative pulmonary function, assessment, and intervention. Anesthesiol Rev. 1990;17:19–24.Google Scholar
  12. 12.
    Arozullah AM, et al. Multifactorial risk index for predicting postoperative respiratory failure in men after major noncardiac surgery. The National Veterans Administration Surgical Quality Improvement Program. Ann Surg. 2000;232(2):242–53.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dales RE, et al. Preoperative prediction of pulmonary complications following thoracic surgery. Chest. 1993;104(1):155–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Cywinski JB, et al. Predictors of prolonged postoperative endotracheal intubation in patients undergoing thoracotomy for lung resection. J Cardiothorac Vasc Anesth. 2009;23(6):766–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Cagini L, et al. B-type natriuretic peptide following thoracic surgery: a predictor of postoperative cardiopulmonary complications. Eur J Cardiothorac Surg. 2014;46:e74–80.CrossRefPubMedGoogle Scholar
  16. 16.
    Smetana GW. Preoperative pulmonary evaluation. N Engl J Med. 1999;340(12):937–44.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Epstein SK, et al. Predicting complications after pulmonary resection. Preoperative exercise testing vs a multifactorial cardiopulmonary risk index. Chest. 1993;104(3):694–700.CrossRefPubMedGoogle Scholar
  18. 18.
    McCracken JL et al: Diagnosis and management of asthma in adults: a review. JAMA 2017;318(3):279–90.CrossRefPubMedGoogle Scholar
  19. 19.
    Landreneau RJ, et al. Acute and chronic morbidity differences between muscle-sparing and standard lateral thoracotomies. J Thorac Cardiovasc Surg. 1996;112(5):1346–50; discussion 1350–1.CrossRefPubMedGoogle Scholar
  20. 20.
    Ginsberg RJ, et al. Modern thirty-day operative mortality for surgical resections in lung cancer. J Thorac Cardiovasc Surg. 1983;86(5):654–8.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Imperatori A, et al. Peri-operative complications of video-assisted thoracoscopic surgery (VATS). Int J Surg. 2008;6(Suppl 1):S78–81.CrossRefPubMedGoogle Scholar
  22. 22.
    Flores RM, Alam N. Video-assisted thoracic surgery lobectomy (VATS), open thoracotomy, and the robot for lung cancer. Ann Thorac Surg. 2008;85(2):S710–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Villamizar NR, et al. Thoracoscopic lobectomy is associated with lower morbidity compared with thoracotomy. J Thorac Cardiovasc Surg. 2009;138(2):419–25.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dylewski MR, Ohaeto AC, Pereira JF. Pulmonary resection using a total endoscopic robotic video-assisted approach. Semin Thorac Cardiovasc Surg. 2011;23:36–42. (description of pilot of robotic surgeries).CrossRefPubMedGoogle Scholar
  25. 25.
    Kent M, et al. Open, video-assisted thoracic surgery, and robotic lobectomy: review of a national database. Ann Thorac Surg. 2014;97:236–44.CrossRefPubMedGoogle Scholar
  26. 26.
    Cooper JD, et al. Results of 150 consecutive bilateral lung volume reduction procedures in patients with severe emphysema. J Thorac Cardiovasc Surg. 1996;112(5):1319–29; discussion 1329–30.CrossRefPubMedGoogle Scholar
  27. 27.
    Naunheim KS, et al. Predictors of operative mortality and cardiopulmonary morbidity in the National Emphysema Treatment Trial. J Thorac Cardiovasc Surg. 2006;131(1):43–53.CrossRefPubMedGoogle Scholar
  28. 28.
    Fujimoto T, et al. Long-term results of lung volume reduction surgery. Eur J Cardiothorac Surg. 2002;21(3):483–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Fishman A, Fessler H, Martinez F, RJ MK Jr, Naunheim K, Piantadosi S, Weinmann G, Wise R, National Emphysema Treatment Trial Research Group. Patients at high risk of death after lung-volume-reduction surgery. N Engl J Med. 2001;345(15):1075–83.CrossRefPubMedGoogle Scholar
  30. 30.
    Drachman DB. Myasthenia gravis (first of two parts). N Engl J Med. 1978;298(3):136–42.CrossRefPubMedGoogle Scholar
  31. 31.
    Eisenkraft JB, et al. Predicting the need for postoperative mechanical ventilation in myasthenia gravis. Anesthesiology. 1986;65(1):79–82.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Moore KH, et al. Thymoma: trends over time. Ann Thorac Surg. 2001;72(1):203–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Karl RC, et al. Factors affecting morbidity, mortality, and survival in patients undergoing Ivor Lewis esophagogastrectomy. Ann Surg. 2000;231(5):635–43.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ellis FH Jr, et al. Esophagogastrectomy for carcinoma of the esophagus and cardia: a comparison of findings and results after standard resection in three consecutive eight-year intervals with improved staging criteria. J Thorac Cardiovasc Surg. 1997;113(5):836–46; discussion 846–8CrossRefPubMedGoogle Scholar
  35. 35.
    Alexiou C, et al. Surgery for esophageal cancer in elderly patients: the view from Nottingham. J Thorac Cardiovasc Surg. 1998;116(4):545–53.CrossRefPubMedGoogle Scholar
  36. 36.
    Bailey SH, et al. Outcomes after esophagectomy: a ten-year prospective cohort. Ann Thorac Surg. 2003;75(1):217–22. discussion 222CrossRefGoogle Scholar
  37. 37.
    Atkins BZ, et al. Reducing hospital morbidity and mortality following esophagectomy. Ann Thorac Surg. 2004;78(4):1170–6. discussion 1170-6CrossRefPubMedGoogle Scholar
  38. 38.
    Money SR, et al. Risk of respiratory failure after repair of thoracoabdominal aortic aneurysms. Am J Surg. 1994;168(2):152–5.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Svensson LG, et al. A prospective study of respiratory failure after high-risk surgery on the thoracoabdominal aorta. J Vasc Surg. 1991;14(3):271–82.CrossRefPubMedGoogle Scholar
  40. 40.
    Etz CD, et al. Pulmonary complications after descending thoracic and thoracoabdominal aortic aneurysm repair: predictors, prevention, and treatment. Ann Thorac Surg. 2007;83(2):S870–6; discussion S890–2.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Woo SW, Berlin D, Hedley-Whyte J. Surfactant function and anesthetic agents. J Appl Physiol. 1969;26(5):571–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Duggan M, Kavanagh BP. Pulmonary atelectasis: a pathogenic perioperative entity. Anesthesiology. 2005;102(4):838–54.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Loring SH, Butler JP. Gas exchange in body cavities. In: Farhi LE, Tenney SM, editors. Handbook of physiology, section 3. Bethesda: American Physiological Society; 1987. p. 283–95.Google Scholar
  44. 44.
    Joyce CJ, Baker AB, Kennedy RR. Gas uptake from an unventilated area of lung: computer model of absorption atelectasis. J Appl Physiol. 1993;74(3):1107–16.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Uzieblo M, et al. Incidence and significance of lobar atelectasis in thoracic surgical patients. Am Surg. 2000;66(5):476–80.PubMedPubMedCentralGoogle Scholar
  46. 46.
    van Kaam AH, et al. Reducing atelectasis attenuates bacterial growth and translocation in experimental pneumonia. Am J Respir Crit Care Med. 2004;169(9):1046–53.CrossRefPubMedGoogle Scholar
  47. 47.
    Byrd RB, Burns JR. Cough dynamics in the post-thoracotomy state. Chest. 1975;67(6):654–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Meyers JR, et al. Changes in functional residual capacity of the lung after operation. Arch Surg. 1975;110(5):576–83.CrossRefPubMedGoogle Scholar
  49. 49.
    Shapiro BA, Peruzzi WT. Respiratory care. In: Miller RD, editor. Anesthesia. New York: Churchill-Livingstone; 2000. p. 2407.Google Scholar
  50. 50.
    Bastin R, et al. Incentive spirometry performance. A reliable indicator of pulmonary function in the early postoperative period after lobectomy? Chest. 1997;111(3):559–63.CrossRefPubMedGoogle Scholar
  51. 51.
    Overend TJ, et al. The effect of incentive spirometry on postoperative pulmonary complications: a systematic review. Chest. 2001;120(3):971–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Freitas ER, et al. Incentive spirometry for preventing pulmonary complications after coronary artery bypass graft. Cochrane Database Syst Rev. 2007;(3):CD004466.Google Scholar
  53. 53.
    Guimaraes MM, et al. Incentive spirometry for prevention of postoperative pulmonary complications in upper abdominal surgery. Cochrane Database Syst Rev. 2009;(3):CD006058.Google Scholar
  54. 54.
    Gosselink R, et al. Incentive spirometry does not enhance recovery after thoracic surgery. Crit Care Med. 2000;28(3):679–83.CrossRefPubMedGoogle Scholar
  55. 55.
    Agostini P, et al. Effectiveness of incentive spirometry in patients following thoracotomy and lung resection including those at high risk for developing pulmonary complications. Thorax. 2013;68:580–5.CrossRefPubMedGoogle Scholar
  56. 56.
    Tyson AF, et al. The effect of incentive spirometry on postoperative pulmonary function following laparotomy: a randomized clinical trial. JAMA Surg. 2015;150(3):229–36.CrossRefPubMedGoogle Scholar
  57. 57.
    Stock MC, et al. Prevention of postoperative pulmonary complications with CPAP, incentive spirometry, and conservative therapy. Chest. 1985;87(2):151–7.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ferreyra GP, et al. Continuous positive airway pressure for treatment of respiratory complications after abdominal surgery: a systematic review and meta-analysis. Ann Surg. 2008;247(4):617–26.CrossRefPubMedGoogle Scholar
  59. 59.
    Tobias JD. Noninvasive ventilation using bilevel positive airway pressure to treat impending respiratory failure in the postanesthesia care unit. J Clin Anesth. 2000;12(5):409–12.CrossRefPubMedGoogle Scholar
  60. 60.
    Yamazaki S, et al. Intrapleural cough pressure in patients after thoracotomy. J Thorac Cardiovasc Surg. 1980;80(4):600–4.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Rodgers A, et al. Reduction of postoperative mortality and morbidity with epidural or spinal anaesthesia: results from overview of randomised trials. BMJ. 2000;321(7275):1493.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Mourisse J, et al. Epidural bupivacaine, sufentanil or the combination for post-thoracotomy pain. Acta Anaesthesiol Scand. 1992;36(1):70–4.CrossRefPubMedGoogle Scholar
  63. 63.
    Davies RG, Myles PS, Graham JM. A comparison of the analgesic efficacy and side-effects of paravertebral vs epidural blockade for thoracotomy--a systematic review and meta-analysis of randomized trials. Br J Anaesth. 2006;96(4):418–26.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Khalil KG, et al. Operative intercostal nerve blocks with long-acting bupivacaine liposome for pain control after thoracotomy. Ann Thorac Surg. 2015;100:2013–8.CrossRefGoogle Scholar
  65. 65.
    Pepe PE, Marini JJ. Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction: the auto-PEEP effect. Am Rev Respir Dis. 1982;126(1):166–70.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Tashkin DP, Cooper CB. The role of long-acting bronchodilators in the management of stable COPD. Chest. 2004;125(1):249–59.CrossRefPubMedGoogle Scholar
  67. 67.
    Wise RA, Tashkin DP. Optimizing treatment of chronic obstructive pulmonary disease: an assessment of current therapies. Am J Med. 2007;120(8 Suppl 1):S4–13.CrossRefPubMedGoogle Scholar
  68. 68.
    Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004;23(6):932–46.CrossRefPubMedGoogle Scholar
  69. 69.
    Slattery DM, et al. Bronchoscopically administered recombinant human DNase for lobar atelectasis in cystic fibrosis. Pediatr Pulmonol. 2001;31(5):383–8.CrossRefPubMedGoogle Scholar
  70. 70.
    Quidaciolu F, et al. Use of minitracheostomy in high-risk pulmonary resection surgery. Results of a comparative study. Minerva Chir. 1994;49(4):315–8.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Issa MM, et al. Prophylactic minitracheostomy in lung resections. A randomized controlled study. J Thorac Cardiovasc Surg. 1991;101(5):895–900.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Balkan ME, et al. Clinical experience with minitracheostomy. Scand J Thorac Cardiovasc Surg. 1996;30(2):93–6.CrossRefPubMedGoogle Scholar
  73. 73.
    Inagawa G, et al. Tracheal obstruction caused by minitracheostomy. Intensive Care Med. 2000;26(11):1707.CrossRefPubMedGoogle Scholar
  74. 74.
    Pue CA, Pacht ER. Complications of fiberoptic bronchoscopy at a university hospital. Chest. 1995;107(2):430–2.CrossRefPubMedGoogle Scholar
  75. 75.
    Ferdinand B, Shennib H. Postoperative pneumonia. Chest Surg Clin N Am. 1998;8(3):529–39, viii.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Nan DN, et al. Nosocomial infection after lung surgery: incidence and risk factors. Chest. 2005;128(4):2647–52.CrossRefPubMedGoogle Scholar
  77. 77.
    Luna CM, et al. Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest. 1997;111(3):676–85.CrossRefPubMedGoogle Scholar
  78. 78.
    Dupont H, et al. Impact of appropriateness of initial antibiotic therapy on the outcome of ventilator-associated pneumonia. Intensive Care Med. 2001;27(2):355–62.CrossRefPubMedGoogle Scholar
  79. 79.
    Ziomek S, et al. Thromboembolism in patients undergoing thoracotomy. Ann Thorac Surg. 1993;56(2):223–6; discussion 227.CrossRefPubMedGoogle Scholar
  80. 80.
    Kalweit G, et al. Pulmonary embolism: a frequent cause of acute fatality after lung resection. Eur J Cardiothorac Surg. 1996;10(4):242–6; discussion 246–7.CrossRefPubMedGoogle Scholar
  81. 81.
    Wood KE. Major pulmonary embolism: review of a pathophysiologic approach to the golden hour of hemodynamically significant pulmonary embolism. Chest. 2002;121(3):877–905.CrossRefPubMedGoogle Scholar
  82. 82.
    Hope WW, et al. Postoperative pulmonary embolism: timing, diagnosis, treatment, and outcomes. Am J Surg. 2007;194(6):814–8; discussion 818–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Velmahos GC, et al. Spiral computed tomography for the diagnosis of pulmonary embolism in critically ill surgical patients: a comparison with pulmonary angiography. Arch Surg. 2001;136(5):505–11.CrossRefPubMedGoogle Scholar
  84. 84.
    Mullins MD, et al. The role of spiral volumetric computed tomography in the diagnosis of pulmonary embolism. Arch Intern Med. 2000;160(3):293–8.CrossRefPubMedGoogle Scholar
  85. 85.
    Yakar A, et al. Cardiac findings of pulmonary thromboembolism by autopsy: a review of 48 cases. Med Sci Monit. 2016;22:1265–73. (CDT for PE in post-surgical patients).CrossRefGoogle Scholar
  86. 86.
    McCabe JM, et al. Usefulness and safety of ultrasound-assisted catheter-directed thrombolysis for submassive pulmonary emboli. Am J Cardiol. 2015;115(6):821–4.CrossRefPubMedGoogle Scholar
  87. 87.
    van der Werff YD, et al. Postpneumonectomy pulmonary edema. A retrospective analysis of incidence and possible risk factors. Chest. 1997;111(5):1278–84.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Turnage WS, Lunn JJ. Postpneumonectomy pulmonary edema. A retrospective analysis of associated variables. Chest. 1993;103(6):1646–50.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Waller DA, et al. Pulmonary endothelial permeability changes after major lung resection. Ann Thorac Surg. 1996;61(5):1435–40.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Fernandez-Perez ER, et al. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105(1):14–8.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Zeldin RA, et al. Postpneumonectomy pulmonary edema. J Thorac Cardiovasc Surg. 1984;87(3):359–65.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Parquin F, et al. Post-pneumonectomy pulmonary edema: analysis and risk factors. Eur J Cardiothorac Surg. 1996;10(11):929–32; discussion 933.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Diamond JM, Lee JC, Kawut SM, et al. Clinical risk factors for postoperative graft dysfunction after lung transplantation. Am J Respir Crit Care Med. 2013;187:527–34.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Hamilton BCS, Kukreja J, Ware LB, Matthay MA. Protein biomarkers associated with primary graft dysfunction following lung transplantation. Am J Physiol Lung Cell Mol Physiol. 2017;312:L531–41.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Aguilar PR, Hachem R. Long term impact of primary graft dysfunction after lung transplantation. Clin Res Pulmonol. 2015;3(1):1026.Google Scholar
  96. 96.
    Nazarnia S, Subramaniam K. Pro: Veno-arterial extracorporeal membrane oxygenation (ECMO) should be used routinely for bilateral lung transplantation. J Cardiothorac Vasc Anesth. 2016; PMID: 27591909.  https://doi.org/10.1053/j.jvca.2016.06.015.CrossRefPubMedGoogle Scholar
  97. 97.
    Beckett A, et al. Needle decompression for tension pneumothorax in tactical combat casualty care: do catheters placed in the midaxillary line kink more often than those in the midclavicular line? J Trauma. 2011;71:S408–12.CrossRefPubMedGoogle Scholar
  98. 98.
    Shekar K, et al. Bronchopleural fistula: an update for intensivists. J Crit Care. 2010;25(1):47–55.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Algar FJ, et al. Prediction of early bronchopleural fistula after pneumonectomy: a multivariate analysis. Ann Thorac Surg. 2001;72(5):1662–7.CrossRefPubMedGoogle Scholar
  100. 100.
    Gkegkes ID, et al. Endobronchial valves in treatment of persistent air leaks: a systematic review of clinical evidence. Med Sci Monit. 2015;21:432–8.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Dooms CA, et al. Bronchial valve treatment for pulmonary air leak after anatomical lung resection for cancer. Eur Respir J. 2014;43:1142–8.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Ajemian MS, et al. Routine fiberoptic endoscopic evaluation of swallowing following prolonged intubation: implications for management. Arch Surg. 2001;136(4):434–7.CrossRefPubMedGoogle Scholar
  103. 103.
    Atkins BZ, et al. Assessing oropharyngeal dysphagia after lung transplantation: altered swallowing mechanisms and increased morbidity. J Heart Lung Transplant. 2007;26(11):1144–8.CrossRefPubMedGoogle Scholar
  104. 104.
    Schilling MK, et al. Role of thromboxane and leukotriene B4 in patients with acute respiratory distress syndrome after oesophagectomy. Br J Anaesth. 1998;80(1):36–40.CrossRefPubMedGoogle Scholar
  105. 105.
    Engle J, et al. The impact of diaphragm management on prolonged ventilator support after thoracoabdominal aortic repair. J Vasc Surg. 1999;29(1):150–6.CrossRefPubMedGoogle Scholar
  106. 106.
    Nag K, et al. Sugammadex: a revolutionary drug in neuromuscular pharmacology. Anesth Essays Res. 2013;7(3):302–6.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Sacan O, et al. Sugammadex reversal of rocuronium-induced neuromuscular blockade: a comparison with neostigmine-glycopyrrolate and edrophonium-atropine. Anesth Analg. 2007;104(3):569–74.CrossRefPubMedGoogle Scholar
  108. 108.
    Gattinoni L, et al. Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA. 1993;269(16):2122–7.CrossRefPubMedGoogle Scholar
  109. 109.
    Malo J, Ali J, Wood LD. How does positive end-expiratory pressure reduce intrapulmonary shunt in canine pulmonary edema? J Appl Physiol. 1984;57(4):1002–10.CrossRefPubMedGoogle Scholar
  110. 110.
    Field S, Kelly SM, Macklem PT. The oxygen cost of breathing in patients with cardiorespiratory disease. Am Rev Respir Dis. 1982;126(1):9–13.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Katz JA, Marks JD. Inspiratory work with and without continuous positive airway pressure in patients with acute respiratory failure. Anesthesiology. 1985;63(6):598–607.CrossRefPubMedGoogle Scholar
  112. 112.
    Jaber S, Chanques G, Jung B. Postoperative noninvasive ventilation. Anesthesiology. 2010;112(2):453–61.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Squadrone V, et al. Continuous positive airway pressure for treatment of postoperative hypoxemia: a randomized controlled trial. JAMA. 2005;293(5):589–95.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Kindgen-Milles D, et al. Nasal-continuous positive airway pressure reduces pulmonary morbidity and length of hospital stay following thoracoabdominal aortic surgery. Chest. 2005;128(2):821–8.CrossRefPubMedGoogle Scholar
  115. 115.
    Lefebvre A, et al. Noninvasive ventilation for acute respiratory failure after lung resection: an observational study. Intensive Care Med. 2009;35(4):663–70.CrossRefGoogle Scholar
  116. 116.
    Michelet P, et al. Non-invasive ventilation for treatment of postoperative respiratory failure after oesophagectomy. Br J Surg. 2009;96(1):54–60.CrossRefGoogle Scholar
  117. 117.
    Rocco M, et al. Non-invasive pressure support ventilation in patients with acute respiratory failure after bilateral lung transplantation. Intensive Care Med. 2001;27(10):1622–6.CrossRefGoogle Scholar
  118. 118.
    Perrin C, et al. Prophylactic use of noninvasive ventilation in patients undergoing lung resectional surgery. Respir Med. 2007;101(7):1572–8.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Stephan F, et al. High-flow nasal oxygen vs noninvasive positive airway pressure in hypoxemic patients after cardiothoracic surgery. JAMA. 2015;313(23):2331–9.CrossRefPubMedGoogle Scholar
  120. 120.
    Corley A, et al. Oyxgen delivery through high-flow nasal cannulae increase end-expiratory lung volume and reduce respiratory rate in post-cardiac surgical patients. Br J Anaesth. 2011;107(6):998–1004.CrossRefPubMedGoogle Scholar
  121. 121.
    Roca O, et al. Humidified high flow nasal cannula supportive therapy improves outcomes in lung transplant recipients readmitted to the intensive care unit because of acute respiratory failure. Transplantation. 2015;99:1092–8.CrossRefPubMedGoogle Scholar
  122. 122.
    Roca O, et al. Current evidence for the effectiveness of heated and humidified high flow nasal cannula supportive therapy in adult patients with respiratory failure. Crit Care. 2016;20(1):109.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    The ARDS Definition Task Force. Acute respiratory distress syndrome the Berlin definition. JAMA. 2012;307(23):2526–33.Google Scholar
  124. 124.
    Bernard GR, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3 Pt 1):818–24.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Agarwal R, et al. Is the mortality higher in the pulmonary vs the extrapulmonary ARDS? A meta analysis. Chest. 2008;133(6):1463–73.CrossRefPubMedGoogle Scholar
  126. 126.
    Kutlu CA, et al. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Ann Thorac Surg. 2000;69(2):376–80.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Zambon M, Vincent JL. Mortality rates for patients with acute lung injury/ARDS have decreased over time. Chest. 2008;133(5):1120–7.CrossRefPubMedGoogle Scholar
  128. 128.
    Khadaroo RG, Marshall JC. ARDS and the multiple organ dysfunction syndrome. Common mechanisms of a common systemic process. Crit Care Clin. 2002;18(1):127–41.CrossRefPubMedGoogle Scholar
  129. 129.
    Ferring M, Vincent JL. Is outcome from ARDS related to the severity of respiratory failure? Eur Respir J. 1997;10(6):1297–300.CrossRefPubMedGoogle Scholar
  130. 130.
    Deitch EA. Multiple organ failure. Pathophysiology and potential future therapy. Ann Surg. 1992;216(2):117–34.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    McHugh LG, et al. Recovery of function in survivors of the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1994;150(1):90–4.CrossRefPubMedGoogle Scholar
  132. 132.
    Peter JV, et al. Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults: meta-analysis. BMJ. 2008;336(7651):1006–9.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Agarwal R, et al. Do glucocorticoids decrease mortality in acute respiratory distress syndrome? A meta-analysis. Respirology. 2007;12(4):585–90.CrossRefPubMedGoogle Scholar
  134. 134.
    Adhikari NK, et al. Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis. BMJ. 2007;334(7597):779.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Adhikari N, Burns KE, Meade MO. Pharmacologic therapies for adults with acute lung injury and acute respiratory distress syndrome. Cochrane Database Syst Rev. 2004;(4):CD004477.Google Scholar
  136. 136.
    Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis. 1974;110(5):556–65.Google Scholar
  137. 137.
    Ranieri VM, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1999;282(1):54–61.CrossRefPubMedGoogle Scholar
  138. 138.
    The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRefGoogle Scholar
  139. 139.
    Levy MM. Optimal peep in ARDS. Changing concepts and current controversies. Crit Care Clin. 2002;18(1):15–33, v–vi.CrossRefPubMedGoogle Scholar
  140. 140.
    Suter PM, Fairley B, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292(6):284–9.CrossRefPubMedGoogle Scholar
  141. 141.
    Roupie E, et al. Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med. 1995;152(1):121–8.CrossRefPubMedGoogle Scholar
  142. 142.
    Brower RG, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351(4):327–36.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Phoenix SI, et al. Does a higher positive end expiratory pressure decrease mortality in acute respiratory distress syndrome? A systematic review and meta-analysis. Anesthesiology. 2009;110(5):1098–105.CrossRefPubMedGoogle Scholar
  144. 144.
    Hickling KG, Joyce C. Permissive hypercapnia in ARDS and its effect on tissue oxygenation. Acta Anaesthesiol Scand Suppl. 1995;107:201–8.CrossRefPubMedGoogle Scholar
  145. 145.
    Fan E, et al. Recruitment maneuvers for acute lung injury: a systematic review. Am J Respir Crit Care Med. 2008;178(11):1156–63.CrossRefPubMedGoogle Scholar
  146. 146.
    Hodgson C, et al. Recruitment manoeuvres for adults with acute respiratory distress syndrome receiving mechanical ventilation. Cochrane Database Syst Rev. 2016;(11):CD006667.Google Scholar
  147. 147.
    McGregor M. Current concepts: pulsus paradoxus. N Engl J Med. 1979;301(9):480–2.CrossRefPubMedGoogle Scholar
  148. 148.
    Biondi JW, et al. The effect of incremental positive end-expiratory pressure on right ventricular hemodynamics and ejection fraction. Anesth Analg. 1988;67(2):144–51.CrossRefPubMedGoogle Scholar
  149. 149.
    Sibbald WJ, Driedger AA. Right ventricular function in acute disease states: pathophysiologic considerations. Crit Care Med. 1983;11(5):339–45.CrossRefPubMedGoogle Scholar
  150. 150.
    Bryan AC. Conference on the scientific basis of respiratory therapy. Pulmonary physiotherapy in the pediatric age group. Comments of a devil's advocate. Am Rev Respir Dis. 1974;110(6 Pt 2):143–4.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Pappert D, et al. Influence of positioning on ventilation-perfusion relationships in severe adult respiratory distress syndrome. Chest. 1994;106(5):1511–6.CrossRefPubMedGoogle Scholar
  152. 152.
    Mure M, et al. Regional ventilation-perfusion distribution is more uniform in the prone position. J Appl Physiol. 2000;88(3):1076–83.CrossRefPubMedGoogle Scholar
  153. 153.
    Gattinoni L, et al. Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure. Anesthesiology. 1991;74(1):15–23.CrossRefPubMedGoogle Scholar
  154. 154.
    Sud S, et al. Effect of mechanical ventilation in the prone position on clinical outcomes in patients with acute hypoxemic respiratory failure: a systematic review and meta-analysis. CMAJ. 2008;178(9):1153–61.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Guerin C, for the PROSEVA Study Group, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159–68.CrossRefPubMedGoogle Scholar
  156. 156.
    Henderson WR, et al. Does prone positioning improve oxygenation and reduce mortality in patients with acute respiratory distress syndrome? Can Respir J. 2014;21(4):213–5.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Esan A, et al. Severe hypoxemic respiratory failure: part 1--ventilatory strategies. Chest. 2010;137(5):1203–16.CrossRefPubMedGoogle Scholar
  158. 158.
    Ferguson ND, for the OSCILLATE Trial Investigators and the Canadian Critical Care Trials Group, et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368:795–805.CrossRefPubMedGoogle Scholar
  159. 159.
    Young D, for the OSCAR Study Group, et al. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368:806–13.CrossRefPubMedGoogle Scholar
  160. 160.
    Gebistorf F, Karam O, Wetterslev J, Afshari A. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst Rev. 2016;(6):CD002787.  https://doi.org/10.1002/14651858.CD002787.pub3.
  161. 161.
    Fuller BM, Mohr NM, Skrupky L, et al. The use of inhaled prostaglandins in patients with ARDS. Chest. 2015;147(6):1510–22.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Extracorporeal life support registry report (international summary). Ann Arbor: Extracorporeal Life Support Organization; 2008. p. 30.Google Scholar
  163. 163.
    Wigfield CH, et al. Early institution of extracorporeal membrane oxygenation for primary graft dysfunction after lung transplantation improves outcome. J Heart Lung Transplant. 2007;26(4):331–8.CrossRefPubMedGoogle Scholar
  164. 164.
    Sidebotham D, et al. Extracorporeal membrane oxygenation for treating severe cardiac and respiratory disease in adults: part 1--overview of extracorporeal membrane oxygenation. J Cardiothorac Vasc Anesth. 2009;23(6):886–92.CrossRefPubMedGoogle Scholar
  165. 165.
    Peek GJ, Mugford M, Tiruvoipati R, for the CESAR trial, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomized controlled trial. Lancet. 2009;374:1351–63.CrossRefGoogle Scholar
  166. 166.
    Davies A, Jones D, Bailey M, Australia and New Zealand Extracorporeal Membrane Oxygenation (ANZ ECMO) Influenza Investigators, et al. Extracorporeal membrane oxygenation for 2009 influenza A(H1N1) acute respiratory distress syndrome. JAMA. 2009;302(17):1888–95.CrossRefPubMedGoogle Scholar
  167. 167.
    Auriant I, et al. Noninvasive ventilation reduces mortality in acute respiratory failure following lung resection. Am J Respir Crit Care Med. 2001;164(7):1231–5.CrossRefGoogle Scholar
  168. 168.
    Hospital-acquired pneumonia in adults: diagnosis, assessment of severity, initial antimicrobial therapy, and preventive strategies. A consensus statement, American Thoracic Society, 1995. Am J Respir Crit Care Med. 1996;153(5):1711–25.Google Scholar
  169. 169.
    Monitoring hospital-acquired infections to promote patient safety--United States, 1990–1999. MMWR Morb Mortal Wkly Rep. 2000;49(8):149–53.Google Scholar
  170. 170.
    Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med. 2002;165(7):867–903.CrossRefPubMedGoogle Scholar
  171. 171.
    Vincent JL, et al. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA. 1995;274(8):639–44.CrossRefPubMedGoogle Scholar
  172. 172.
    National Nosocomial Infections Surveillance System, Division of Healthcare Quality Promotion, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Services: Atlanta. http://www.cdc.gov/ncidod/dhqp/pdf/nnis/2004NNISreport.pdf.
  173. 173.
    DiCocco JM, Croce MA. Ventilator-associated pneumonia: an overview. Expert Opin Pharmacother. 2009;10(9):1461–7.CrossRefPubMedGoogle Scholar
  174. 174.
    A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med. 2006;355(25):2619–30.Google Scholar
  175. 175.
    Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63:1–51.Google Scholar
  176. 176.
    Resar R, et al. Using a bundle approach to improve ventilator care processes and reduce ventilator-associated pneumonia. Jt Comm J Qual Patient Saf. 2005;31(5):243–8.CrossRefPubMedGoogle Scholar
  177. 177.
    Bouza E, et al. Continuous aspiration of subglottic secretions in the prevention of ventilator-associated pneumonia in the postoperative period of major heart surgery. Chest. 2008;134(5):938–46.CrossRefPubMedGoogle Scholar
  178. 178.
    Kollef MH, et al. Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: the NASCENT randomized trial. JAMA. 2008;300(7):805–13.CrossRefPubMedGoogle Scholar
  179. 179.
    Brochard L, Thille AW. What is the proper approach to liberating the weak from mechanical ventilation? Crit Care Med. 2009;37(10 Suppl):S410–5.CrossRefPubMedGoogle Scholar
  180. 180.
    Esteban A, et al. A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure Collaborative Group. N Engl J Med. 1995;332(6):345–50.CrossRefPubMedGoogle Scholar
  181. 181.
    Brochard L, et al. Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med. 1994;150(4):896–903.CrossRefPubMedGoogle Scholar
  182. 182.
    Boles JM, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29(5):1033–56.CrossRefGoogle Scholar
  183. 183.
    Levine S, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–35.CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Kress JP, et al. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342(20):1471–7.CrossRefPubMedGoogle Scholar
  185. 185.
    Brook AD, et al. Effect of a nursing-implemented sedation protocol on the duration of mechanical ventilation. Crit Care Med. 1999;27(12):2609–15.CrossRefPubMedGoogle Scholar
  186. 186.
    Ostermann ME, et al. Sedation in the intensive care unit: a systematic review. JAMA. 2000;283(11):1451–9.CrossRefPubMedGoogle Scholar
  187. 187.
    Jacobi J, et al. Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult. Crit Care Med. 2002;30(1):119–41.CrossRefPubMedGoogle Scholar
  188. 188.
    Ely EW, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA. 2004;291(14):1753–62.CrossRefPubMedGoogle Scholar
  189. 189.
    Khamiees M, et al. Predictors of extubation outcome in patients who have successfully completed a spontaneous breathing trial. Chest. 2001;120(4):1262–70.CrossRefPubMedGoogle Scholar
  190. 190.
    MacIntyre NR, et al. Evidence-based guidelines for weaning and discontinuing ventilatory support: a collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest. 2001;120(6 Suppl):375S–95S.CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Miller RL, Cole RP. Association between reduced cuff leak volume and postextubation stridor. Chest. 1996;110(4):1035–40.CrossRefPubMedGoogle Scholar
  192. 192.
    Engoren M. Evaluation of the cuff-leak test in a cardiac surgery population. Chest. 1999;116(4):1029–31.CrossRefPubMedGoogle Scholar
  193. 193.
    Lin MC, et al. Pulmonary mechanics in patients with prolonged mechanical ventilation requiring tracheostomy. Anaesth Intensive Care. 1999;27(6):581–5.PubMedPubMedCentralGoogle Scholar
  194. 194.
    Rumbak MJ, et al. A prospective, randomized, study comparing early percutaneous dilational tracheotomy to prolonged translaryngeal intubation (delayed tracheotomy) in critically ill medical patients. Crit Care Med. 2004;32(8):1689–94.CrossRefPubMedGoogle Scholar
  195. 195.
    Terragni PP, et al. Early vs late tracheotomy for prevention of pneumonia in mechanically ventilated adult ICU patients: a randomized controlled trial. JAMA. 2010;303(15):1483–9.CrossRefPubMedGoogle Scholar
  196. 196.
    Freeman BD, et al. A meta-analysis of prospective trials comparing percutaneous and surgical tracheostomy in critically ill patients. Chest. 2000;118(5):1412–8.CrossRefPubMedGoogle Scholar
  197. 197.
    Freeman BD, et al. A prospective, randomized study comparing percutaneous with surgical tracheostomy in critically ill patients. Crit Care Med. 2001;29(5):926–30.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology and Perioperative CareUniversity of California at San FranciscoSan FranciscoUSA
  2. 2.Department of Anesthesia and Perioperative MedicineMedical University of South CarolinaCharlestonUSA
  3. 3.Department of Anesthesia and Preoperative CareUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations