Open Thoracoabdominal Aortic Aneurysm Repair

  • Helen A. Lindsay
  • Coimbatore SrinivasEmail author
  • Maral Ouzounian


Repair of a thoracoabdominal aortic aneurysm (TAAA) is among the most challenging cases for an anesthesiologist. The anesthetic technique is demanding and requires a high level of expertise, including proficiencies in managing one-lung ventilation, massive blood loss, coagulopathy, and cerebrospinal fluid drains. Specialized care from all members of the perioperative team has been shown to have a significant impact on outcomes.

The main complications include respiratory failure, renal failure, paraplegia, stroke, and major cardiac complications. To prevent spinal cord ischemia, different techniques may be used to achieve the same physiological goal of maintaining spinal cord perfusion pressure. Techniques to prevent and minimize spinal cord ischemia primarily focus on maximizing collateral flow by optimizing the spinal cord perfusion pressure while prolonging ischemic tolerance and reducing reperfusion injury with hypothermia and pharmacotherapy. The mainstay interventions to prevent renal injury include avoidance of nephrotoxic insults and selective cold renal perfusion.


Thoracoabdominal aortic aneurysm Left heart bypass Spinal cord injury Cerebrospinal fluid drainage Renal protection 


  1. 1.
    Acher C, Wynn M. Outcomes in open repair of the thoracic and thoracoabdominal aorta. J Vasc Surg. 2010;52(4 Suppl):3S–9S.CrossRefPubMedGoogle Scholar
  2. 2.
    Cowan JA Jr, Dimick JB, Henke PK, Huber TS, Stanley JC, Upchurch GR Jr. Surgical treatment of intact thoracoabdominal aortic aneurysms in the United States: hospital and surgeon volume-related outcomes. J Vasc Surg. 2003;37(6):1169–74.CrossRefPubMedGoogle Scholar
  3. 3.
    Schermerhorn ML, Giles KA, Hamdan AD, Dalhberg SE, Hagberg R, Pomposelli F. Population-based outcomes of open descending thoracic aortic aneurysm repair. J Vasc Surg. 2008;48(4):821–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the diagnosis and management of patients with thoracic aortic disease: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Anesth Analg. 2010;111(2):279–315.CrossRefPubMedGoogle Scholar
  5. 5.
    Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H, et al. 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(41):2873–926.CrossRefPubMedGoogle Scholar
  6. 6.
    Adams HD, Van Geertruyden HH. Neurologic complications of aortic surgery. Ann Surg. 1956;144(4):574–610.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Panthee N, Ono M. Spinal cord injury following thoracic and thoracoabdominal aortic repairs. Asian Cardiovasc Thorac Ann. 2015;23(2):235–46.CrossRefPubMedGoogle Scholar
  8. 8.
    Cina CS, Abouzahr L, Arena GO, Lagana A, Devereaux PJ, Farrokhyar F. Cerebrospinal fluid drainage to prevent paraplegia during thoracic and thoracoabdominal aortic aneurysm surgery: a systematic review and meta-analysis. J Vasc Surg. 2004;40(1):36–44.CrossRefPubMedGoogle Scholar
  9. 9.
    Etz CD, Kari FA, Mueller CS, Silovitz D, Brenner RM, Lin HM, et al. The collateral network concept: a reassessment of the anatomy of spinal cord perfusion. J Thorac Cardiovasc Surg. 2011;141(4):1020–8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Coselli JS, LeMaire SA, Preventza O, de la Cruz KI, Cooley DA, Price MD, et al. Outcomes of 3309 thoracoabdominal aortic aneurysm repairs. J Thorac Cardiovasc Surg. 2016;151(5):1323–37.CrossRefPubMedGoogle Scholar
  11. 11.
    Mehmedagic I, Jorgensen S, Acosta S. Mid-term follow-up of patients with permanent sequel due to spinal cord ischemia after advanced endovascular therapy for extensive aortic disease. Spinal Cord. 2015;53(3):232.CrossRefGoogle Scholar
  12. 12.
    Bisdas T, Panuccio G, Sugimoto M, Torsello G, Austermann M. Risk factors for spinal cord ischemia after endovascular repair of thoracoabdominal aortic aneurysms. J Vasc Surg. 2015;61(6):1408–16.CrossRefPubMedGoogle Scholar
  13. 13.
    Buth J, Harris PL, Hobo R, van Eps R, Cuypers P, Duijm L, et al. Neurologic complications associated with endovascular repair of thoracic aortic pathology: incidence and risk factors. A study from the European Collaborators on Stent/Graft Techniques for Aortic Aneurysm Repair (EUROSTAR) registry. J Vasc Surg. 2007;46(6):1103–10. discussion 10-1.CrossRefPubMedGoogle Scholar
  14. 14.
    Conrad MF, Ye JY, Chung TK, Davison JK, Cambria RP. Spinal cord complications after thoracic aortic surgery: long-term survival and functional status varies with deficit severity. J Vasc Surg. 2008;48(1):47–53.CrossRefPubMedGoogle Scholar
  15. 15.
    Svensson LG, Crawford ES, Hess KR, Coselli JS, Safi HJ. Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg. 1993;17(2):357–68. discussion 68-70CrossRefPubMedGoogle Scholar
  16. 16.
    Eagleton MJ, Shah S, Petkosevek D, Mastracci TM, Greenberg RK. Hypogastric and subclavian artery patency affects onset and recovery of spinal cord ischemia associated with aortic endografting. J Vasc Surg. 2014;59(1):89–94.CrossRefPubMedGoogle Scholar
  17. 17.
    Becker DA, McGarvey ML, Rojvirat C, Bavaria JE, Messe SR. Predictors of outcome in patients with spinal cord ischemia after open aortic repair. Neurocrit Care. 2013;18(1):70–4.CrossRefPubMedGoogle Scholar
  18. 18.
    Keith CJ Jr, Passman MA, Carignan MJ, Parmar GM, Nagre SB, Patterson MA, et al. Protocol implementation of selective postoperative lumbar spinal drainage after thoracic aortic endograft. J Vasc Surg. 2012;55(1):1–8. discussion 8.CrossRefPubMedGoogle Scholar
  19. 19.
    Yan TD, Tian DH, LeMaire SA, Misfeld M, Elefteriades JA, Chen EP, et al. The ARCH projects: design and rationale (IAASSG 001). Eur J Cardiothorac Surg. 2014;45(1):10–6.CrossRefPubMedGoogle Scholar
  20. 20.
    The Society of Thoracic Surgeons. STS National Database, Data Managers 2017. Available from:
  21. 21.
    Boening A, Karck M, Conzelmann LO, Easo J, Krüger T, Rylski B, et al. German registry for acute aortic dissection type A: structure, results, and future perspectives. Thorac Cardiovasc Surg. 2017;65(2):77–84.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Beck AW, Sedrakyan A, Mao J, Venermo M, Faizer R, Debus S, et al. Variations in abdominal aortic aneurysm care: a report from the international consortium of vascular registries. Circulation. 2016;134(24):1948–58.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zammert M, Gelman S. The pathophysiology of aortic cross-clamping. Best Pract Res Clin Anaesthesiol. 2016;30(3):257–69.CrossRefPubMedGoogle Scholar
  24. 24.
    Crawford ES, Crawford JL, Safi HJ, Coselli JS, Hess KR, Brooks B, et al. Thoracoabdominal aortic aneurysms: preoperative and intraoperative factors determining immediate and long-term results of operations in 605 patients. J Vasc Surg. 1986;3(3):389–404.CrossRefPubMedGoogle Scholar
  25. 25.
    Gelman S, Khazaeli MB, Orr R, Henderson T. Blood volume redistribution during cross-clamping of the descending aorta. Anesth Analg. 1994;78(2):219–24.CrossRefPubMedGoogle Scholar
  26. 26.
    Stokland O, Miller MM, Ilebekk A, Kiil F. Mechanism of hemodynamic responses to occlusion of the descending thoracic aorta. Am J Phys. 1980;238(4):H423–9.Google Scholar
  27. 27.
    Roizen MF, Beaupre PN, Alpert RA, Kremer P, Cahalan MK, Shiller N, et al. Monitoring with two-dimensional transesophageal echocardiography. Comparison of myocardial function in patients undergoing supraceliac, suprarenal-infraceliac, or infrarenal aortic occlusion. J Vasc Surg. 1984;1(2):300–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Acher CW, Wynn M. A modern theory of paraplegia in the treatment of aneurysms of the thoracoabdominal aorta: an analysis of technique specific observed/expected ratios for paralysis. J Vasc Surg. 2009;49(5):1117–24. discussion 24.CrossRefPubMedGoogle Scholar
  29. 29.
    Melissano G, Bertoglio L, Rinaldi E, Leopardi M, Chiesa R. An anatomical review of spinal cord blood supply. J Cardiovasc Surg. 2015;56(5):699–706.Google Scholar
  30. 30.
    Connolly JE. Hume memorial lecture. Prevention of spinal cord complications in aortic surgery. Am J Surg. 1998;176(2):92–101.CrossRefPubMedGoogle Scholar
  31. 31.
    Khan SN, Stansby G. Cerebrospinal fluid drainage for thoracic and thoracoabdominal aortic aneurysm surgery. Cochrane Database Syst Rev. 2012;10:CD003635.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Jacobs MJ, de Mol BA, Elenbaas T, Mess WH, Kalkman CJ, Schurink GW, et al. Spinal cord blood supply in patients with thoracoabdominal aortic aneurysms. J Vasc Surg. 2002;35(1):30–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Griepp RB, Griepp EB. Spinal cord protection in surgical and endovascular repair of thoracoabdominal aortic disease. J Thorac Cardiovasc Surg. 2015;149(2 Suppl):S86–90.CrossRefPubMedGoogle Scholar
  34. 34.
    Etz CD, Zoli S, Bischoff MS, Bodian C, Di Luozzo G, Griepp RB. Measuring the collateral network pressure to minimize paraplegia risk in thoracoabdominal aneurysm resection. J Thorac Cardiovasc Surg. 2010;140(6 Suppl):S125–30. discussion S42-S46.CrossRefPubMedGoogle Scholar
  35. 35.
    Backes WH, Nijenhuis RJ, Mess WH, Wilmink FA, Schurink GW, Jacobs MJ. Magnetic resonance angiography of collateral blood supply to spinal cord in thoracic and thoracoabdominal aortic aneurysm patients. J Vasc Surg. 2008;48(2):261–71.CrossRefPubMedGoogle Scholar
  36. 36.
    Svensson LG, Crawford ES. Cardiovascular and vascular disease of the aorta. Philadelphia: W.B. Saunders Company; 1997.Google Scholar
  37. 37.
    Katz NM, Blackstone EH, Kirklin JW, Karp RB. Incremental risk factors for spinal cord injury following operation for acute traumatic aortic transection. J Thorac Cardiovasc Surg. 1981;81(5):669–74.PubMedPubMedCentralGoogle Scholar
  38. 38.
    O’Callaghan A, Mastracci TM, Eagleton MJ. Staged endovascular repair of thoracoabdominal aortic aneurysms limits incidence and severity of spinal cord ischemia. J Vasc Surg. 2015;61(2):347–54.e1.CrossRefPubMedGoogle Scholar
  39. 39.
    Davidovic L, Ilic N, Koncar I. Differences between immediate and late onset of spinal cord ischemia after open and endovascular aortic interventions. J Cardiovasc Surg. 2015;56(5):737–44.Google Scholar
  40. 40.
    Etz CD, Homann TM, Plestis KA, Zhang N, Luehr M, Weisz DJ, et al. Spinal cord perfusion after extensive segmental artery sacrifice: can paraplegia be prevented? Eur J Cardiothorac Surg. 2007;31(4):643–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Maurel B, Delclaux N, Sobocinski J, Hertault A, Martin-Gonzalez T, Moussa M, et al. The impact of early pelvic and lower limb reperfusion and attentive peri-operative management on the incidence of spinal cord ischemia during thoracoabdominal aortic aneurysm endovascular repair. Eur J Vasc Endovasc Surg. 2015;49(3):248–54.CrossRefPubMedGoogle Scholar
  42. 42.
    Etz CD, Weigang E, Hartert M, Lonn L, Mestres CA, Di Bartolomeo R, et al. Contemporary spinal cord protection during thoracic and thoracoabdominal aortic surgery and endovascular aortic repair: a position paper of the vascular domain of the European Association for Cardio-Thoracic Surgery dagger. Eur J Cardiothorac Surg. 2015;47(6):943–57.CrossRefPubMedGoogle Scholar
  43. 43.
    Marini CP, Levison J, Caliendo F, Nathan IM, Cohen JR. Control of proximal hypertension during aortic cross-clamping: its effect on cerebrospinal fluid dynamics and spinal cord perfusion pressure. Semin Thorac Cardiovasc Surg. 1998;10(1):51–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Jacobs MJ, Mess W, Mochtar B, Nijenhuis RJ, Statius van Eps RG, Schurink GW. The value of motor evoked potentials in reducing paraplegia during thoracoabdominal aneurysm repair. J Vasc Surg. 2006;43(2):239–46.CrossRefPubMedGoogle Scholar
  45. 45.
    Safi HJ, Miller CC 3rd, Azizzadeh A, Iliopoulos DC. Observations on delayed neurologic deficit after thoracoabdominal aortic aneurysm repair. J Vasc Surg. 1997;26(4):616–22.CrossRefPubMedGoogle Scholar
  46. 46.
    Acher CW, Wynn MM, Mell MW, Tefera G, Hoch JR. A quantitative assessment of the impact of intercostal artery reimplantation on paralysis risk in thoracoabdominal aortic aneurysm repair. Ann Surg. 2008;248(4):529–40.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Estrera AL, Miller CC, Chen EP, Meada R, Torres RH, Porat EE, et al. Descending thoracic aortic aneurysm repair: 12-year experience using distal aortic perfusion and cerebrospinal fluid drainage. Ann Thorac Surg. 2005;80(4):1290–6. discussion 6.CrossRefPubMedGoogle Scholar
  48. 48.
    Minatoya K, Ogino H, Matsuda H, Sasaki H, Yagihara T, Kitamura S. Replacement of the descending aorta: recent outcomes of open surgery performed with partial cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2008;136(2):431–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Kulik A, Castner CF, Kouchoukos NT. Replacement of the descending thoracic aorta: contemporary outcomes using hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 2010;139(2):249–55.CrossRefPubMedGoogle Scholar
  50. 50.
    Di Luozzo G, Griepp RB. Experimental basis and clinical studies of brain protection in aortic arch surgery. In: Bosner RS, Pagano D, Haverich A, editors. Brain protection in cardiac surgery. London: Springer; 2011. p. 219–28.CrossRefGoogle Scholar
  51. 51.
    Di Mauro M, Iaco AL, Di Lorenzo C, Gagliardi M, Varone E, Al Amri H, et al. Cold reperfusion before rewarming reduces neurological events after deep hypothermic circulatory arrest. Eur J Cardiothorac Surg. 2013;43(1):168–73.CrossRefPubMedGoogle Scholar
  52. 52.
    Svensson LG, Crawford ES, Hess KR, Coselli JS, Raskin S, Shenaq SA, et al. Deep hypothermia with circulatory arrest. Determinants of stroke and early mortality in 656 patients. J Thorac Cardiovasc Surg. 1993;106(1):19–28; discussion -31.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Ziganshin BA, Rajbanshi BG, Tranquilli M, Fang H, Rizzo JA, Elefteriades JA. Straight deep hypothermic circulatory arrest for cerebral protection during aortic arch surgery: safe and effective. J Thorac Cardiovasc Surg. 2014;148(3):888–98; discussion 98-900.CrossRefPubMedGoogle Scholar
  54. 54.
    Tian DH, Wan B, Bannon PG, Misfeld M, LeMaire SA, Kazui T, et al. A meta-analysis of deep hypothermic circulatory arrest versus moderate hypothermic circulatory arrest with selective antegrade cerebral perfusion. Ann Cardiothorac Surg. 2013;2(2):148–58.PubMedPubMedCentralGoogle Scholar
  55. 55.
    De Paulis R, Czerny M, Weltert L, Bavaria J, Borger MA, Carrel TP, et al. Current trends in cannulation and neuroprotection during surgery of the aortic arch in Europe. Eur J Cardiothorac Surg. 2015;47(5):917–23.CrossRefPubMedGoogle Scholar
  56. 56.
    Kamiya H, Hagl C, Kropivnitskaya I, Bothig D, Kallenbach K, Khaladj N, et al. The safety of moderate hypothermic lower body circulatory arrest with selective cerebral perfusion: a propensity score analysis. J Thorac Cardiovasc Surg. 2007;133(2):501–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Zierer A, El-Sayed Ahmad A, Papadopoulos N, Moritz A, Diegeler A, Urbanski PP. Selective antegrade cerebral perfusion and mild (28–30 °C) systemic hypothermic circulatory arrest for aortic arch replacement: results from 1002 patients. J Thorac Cardiovasc Surg. 2012;144(5):1042–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Lindsay H, Srinivas C, Djaiani G. Neuroprotection during aortic surgery. Best Pract Res Clin Anaesthesiol. 2016;30(3):283–303.CrossRefPubMedGoogle Scholar
  59. 59.
    Duceppe E, Parlow J, MacDonald P, Lyons K, McMullen M, Srinathan S, et al. Canadian cardiovascular society guidelines on perioperative cardiac risk assessment and management for patients who undergo noncardiac surgery. Can J Cardiol. 2017;33(1):17–32.CrossRefPubMedGoogle Scholar
  60. 60.
    Fleisher LA, Fleischmann KE, Auerbach AD, Barnason SA, Beckman JA, Bozkurt B, et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation. 2014;130(24):2215–45.CrossRefGoogle Scholar
  61. 61.
    Roshanov PS, Rochwerg B, Patel A, Salehian O, Duceppe E, Belley-Côté EP, et al. Withholding versus continuing angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers before noncardiac surgery: an analysis of the vascular events in noncardiac surgery patIents cOhort evaluatioN prospective cohort. Anesthesiology. 2017;126(1):16–27.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Coselli JS, LeMaire SA, Miller CC 3rd, Schmittling ZC, Koksoy C, Pagan J, et al. Mortality and paraplegia after thoracoabdominal aortic aneurysm repair: a risk factor analysis. Ann Thorac Surg. 2000;69(2):409–14.CrossRefPubMedGoogle Scholar
  63. 63.
    Safi HJ, Estrera AL, Miller CC, Huynh TT, Porat EE, Azizzadeh A, et al. Evolution of risk for neurologic deficit after descending and thoracoabdominal aortic repair. Ann Thorac Surg. 2005;80(6):2173–9; discussion 9CrossRefPubMedGoogle Scholar
  64. 64.
    Greenberg RK, Lu Q, Roselli EE, Svensson LG, Moon MC, Hernandez AV, et al. Contemporary analysis of descending thoracic and thoracoabdominal aneurysm repair: a comparison of endovascular and open techniques. Circulation. 2008;118(8):808–17.CrossRefGoogle Scholar
  65. 65.
    Schlosser FJ, Mojibian H, Verhagen HJ, Moll FL, Muhs BE. Open thoracic or thoracoabdominal aortic aneurysm repair after previous abdominal aortic aneurysm surgery. J Vasc Surg. 2008;48(3):761–8.CrossRefPubMedGoogle Scholar
  66. 66.
    American Society of Anesthesiologists. 10.28.15 Standards for Basic Anesthetic Monitoring Amended 2010, Affirmed 2015.Google Scholar
  67. 67.
    Sandham JD, Hull RD, Brant RF, Knox L, Pineo GF, Doig CJ, et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med. 2003;348(1):5–14.CrossRefGoogle Scholar
  68. 68.
    Dias NV, Sonesson B, Kristmundsson T, Holm H, Resch T. Short-term outcome of spinal cord ischemia after endovascular repair of thoracoabdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2015;49(4):403–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Meylaerts SA, Jacobs MJ, van Iterson V, De Haan P, Kalkman CJ. Comparison of transcranial motor evoked potentials and somatosensory evoked potentials during thoracoabdominal aortic aneurysm repair. Ann Surg. 1999;230(6):742–9.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Coselli JS, Tsai PI. Motor evoked potentials in thoracoabdominal aortic surgery: CON. Cardiol Clin. 2010;28(2):361–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Etz CD, von Aspern K, Gudehus S, Luehr M, Girrbach FF, Ender J, et al. Near-infrared spectroscopy monitoring of the collateral network prior to, during, and after thoracoabdominal aortic repair: a pilot study. Eur J Vasc Endovasc Surg. 2013;46(6):651–6.CrossRefPubMedGoogle Scholar
  72. 72.
    Boezeman RP, van Dongen EP, Morshuis WJ, Sonker U, Boezeman EH, Waanders FG, et al. Spinal near-infrared spectroscopy measurements during and after thoracoabdominal aortic aneurysm repair: a pilot study. Ann Thorac Surg. 2015;99(4):1267–74.CrossRefPubMedGoogle Scholar
  73. 73.
    Urbanski PP, Lenos A, Kolowca M, Bougioukakis P, Keller G, Zacher M, et al. Near-infrared spectroscopy for neuromonitoring of unilateral cerebral perfusion. Eur J Cardiothorac Surg. 2013;43(6):1140–4.CrossRefPubMedGoogle Scholar
  74. 74.
    Zheng F, Sheinberg R, Yee MS, Ono M, Zheng Y, Hogue CW. Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review. Anesth Analg. 2013;116(3):663–76.CrossRefPubMedGoogle Scholar
  75. 75.
    Arrowsmith JE, Ganugapenta MSSR. Intraoperative brain monitoring in cardiac surgery. In: Bosner RS, Pagano D, Haverich A, editors. Brain protection in cardiac surgery. London: Spinger; 2011. p. 83–111.CrossRefGoogle Scholar
  76. 76.
    Douds MT, Straub EJ, Kent AC, Bistrick CH, Sistino JJ. A systematic review of cerebral oxygenation-monitoring devices in cardiac surgery. Perfusion. 2014;29(6):545–52.CrossRefPubMedGoogle Scholar
  77. 77.
    Fedorow C, Grocott HP. Cerebral monitoring to optimize outcomes after cardiac surgery. Curr Opin Anaesthesiol. 2010;23(1):89–94.CrossRefPubMedGoogle Scholar
  78. 78.
    Mohandas BS, Jagadeesh AM, Vikram SB. Impact of monitoring cerebral oxygen saturation on the outcome of patients undergoing open heart surgery. Ann Cardiac Anesth. 2013;16(2):102–6.CrossRefGoogle Scholar
  79. 79.
    Deschamps A, Hall R, Grocott H, Mazer CD, Choi PT, Turgeon AF, et al. Cerebral oximetry monitoring to maintain Normal Cerebral Oxygen Saturation during high-risk cardiac surgery: a randomized controlled feasibility trial. Anesthesiology. 2016;124(4):826–36.CrossRefPubMedGoogle Scholar
  80. 80.
    Khoyratty SI, Gajendragadkar PR, Polisetty K, Ward S, Skinner T. Flow rates through intravenous access devices: an in vitro study. J Clin Anesth. 2016;31:101–5.CrossRefPubMedGoogle Scholar
  81. 81.
    van der Zee EN, Egal M, Gommers D, Groeneveld AB. Targeting urine output and 30-day mortality in goal-directed therapy: a systematic review with meta-analysis and meta-regression. BMC Anesthesiol. 2017;17(1):22.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Egal M, de Geus HR, van Bommel J, Groeneveld AB. Targeting oliguria reversal in perioperative restrictive fluid management does not influence the occurrence of renal dysfunction: a systematic review and meta-analysis. Eur J Anaesthesiol. 2016;33(6):425–35.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Alpert RA, Roizen MF, Hamilton WK, Stoney RJ, Ehrenfeld WK, Poler SM, et al. Intraoperative urinary output does not predict postoperative renal function in patients undergoing abdominal aortic revascularization. Surgery. 1984;95(6):707–11.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Kheterpal S, Tremper KK, Englesbe MJ, O’Reilly M, Shanks AM, Fetterman DM, et al. Predictors of postoperative acute renal failure after noncardiac surgery in patients with previously normal renal function. Anesthesiology. 2007;107(6):892–902.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Sear JW. Kidney dysfunction in the postoperative period. Br J Anaesth. 2005;95(1):20–32.CrossRefPubMedGoogle Scholar
  86. 86.
    Shine T, Nugent M. Sodium nitroprusside decreases spinal cord perfusion pressure during descending thoracic aortic cross-clamping in the dog. J Cardiothorac Anesth. 1990;4(2):185–93.CrossRefPubMedGoogle Scholar
  87. 87.
    Flaherty JT, Magee PA, Gardner TL, Potter A, MacAllister NP. Comparison of intravenous nitroglycerin and sodium nitroprusside for treatment of acute hypertension developing after coronary artery bypass surgery. Circulation. 1982;65(6):1072–7.CrossRefPubMedGoogle Scholar
  88. 88.
    Gelman S, Reves JG, Fowler K, Samuelson PN, Lell WA, Smith LR. Regional blood flow during cross-clamping of the thoracic aorta and infusion of sodium nitroprusside. J Thorac Cardiovasc Surg. 1983;85(2):287–91.PubMedPubMedCentralGoogle Scholar
  89. 89.
    National Blood Authority. Patient Blood Management Guidelines: Module 1- Critical Bleeding/Massive Transfusion. Canberra, Australia 2011.Google Scholar
  90. 90.
    Management ASoATFoPB. Practice guidelines for perioperative blood management: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Management*. Anesthesiology. 2015;122(2):241–75.CrossRefGoogle Scholar
  91. 91.
    Karkouti K, Callum J, Wijeysundera DN, Rao V, Crowther M, Grocott HP, et al. Point-of-care hemostatic testing in cardiac surgery: a stepped-wedge clustered randomized controlled trial. Circulation. 2016;134(16):1152–62.CrossRefPubMedGoogle Scholar
  92. 92.
    Myles PS, Smith JA, Forbes A, Silbert B, Jayarajah M, Painter T, et al. Tranexamic acid in patients undergoing coronary-artery surgery. N Engl J Med. 2017;376(2):136–48.CrossRefPubMedGoogle Scholar
  93. 93.
    Cheung AT, Weiss SJ, McGarvey ML, Stecker MM, Hogan MS, Escherich A, et al. Interventions for reversing delayed-onset postoperative paraplegia after thoracic aortic reconstruction. Ann Thorac Surg. 2002;74(2):413–9; discussion 20-1.CrossRefPubMedGoogle Scholar
  94. 94.
    Coselli JS, LeMaire SA, Koksoy C, Schmittling ZC, Curling PE. Cerebrospinal fluid drainage reduces paraplegia after thoracoabdominal aortic aneurysm repair: results of a randomized clinical trial. J Vasc Surg. 2002;35(4):631–9.CrossRefPubMedGoogle Scholar
  95. 95.
    Ullery BW, Cheung AT, Fairman RM, Jackson BM, Woo EY, Bavaria J, et al. Risk factors, outcomes, and clinical manifestations of spinal cord ischemia following thoracic endovascular aortic repair. J Vasc Surg. 2011;54(3):677–84.CrossRefPubMedGoogle Scholar
  96. 96.
    Wong CS, Healy D, Canning C, Coffey JC, Boyle JR, Walsh SR. A systematic review of spinal cord injury and cerebrospinal fluid drainage after thoracic aortic endografting. J Vasc Surg. 2012;56(5):1438–47.CrossRefPubMedGoogle Scholar
  97. 97.
    Dardik A, Perler BA, Roseborough GS, Williams GM. Subdural hematoma after thoracoabdominal aortic aneurysm repair: an underreported complication of spinal fluid drainage? J Vasc Surg. 2002;36(1):47–50.CrossRefPubMedGoogle Scholar
  98. 98.
    Estrera AL, Sheinbaum R, Miller CC, Azizzadeh A, Walkes JC, Lee TY, et al. Cerebrospinal fluid drainage during thoracic aortic repair: safety and current management. Ann Thorac Surg. 2009;88(1):9–15; discussion 15.CrossRefPubMedGoogle Scholar
  99. 99.
    Hanna JM, Andersen ND, Aziz H, Shah AA, McCann RL, Hughes GC. Results with selective preoperative lumbar drain placement for thoracic endovascular aortic repair. Ann Thorac Surg. 2013;95(6):1968–74; discussion 74-5.CrossRefPubMedGoogle Scholar
  100. 100.
    McHardy FE, Bayly PJ, Wyatt MG. Fatal subdural hemorrhage following lumbar spinal drainage during repair of thoraco-abdominal aneurysm. Anaesthesia. 2001;56(2):168–70.CrossRefPubMedGoogle Scholar
  101. 101.
    Verhoeven EL, Katsargyris A, Bekkema F, Oikonomou K, Zeebregts CJ, Ritter W, et al. Editor’s choice-ten-year experience with endovascular repair of thoracoabdominal aortic aneurysms: results from 166 consecutive patients. Eur J Vasc Endovasc Surg. 2015;49(5):524–31.CrossRefPubMedGoogle Scholar
  102. 102.
    Wynn MM, Sebranek J, Marks E, Engelbert T, Acher CW. Complications of spinal fluid drainage in thoracic and thoracoabdominal aortic aneurysm surgery in 724 patients treated from 1987 to 2013. J Cardiothorac Vasc Anesth. 2015;29(2):342–50.CrossRefPubMedGoogle Scholar
  103. 103.
    Youngblood SC, Tolpin DA, LeMaire SA, Coselli JS, Lee VV, Cooper JR Jr. Complications of cerebrospinal fluid drainage after thoracic aortic surgery: a review of 504 patients over 5 years. J Thorac Cardiovasc Surg. 2013;146(1):166–71.CrossRefPubMedGoogle Scholar
  104. 104.
    Weaver KD, Wiseman DB, Farber M, Ewend MG, Marston W, Keagy BA. Complications of lumbar drainage after thoracoabdominal aortic aneurysm repair. J Vasc Surg. 2001;34(4):623–7.CrossRefPubMedGoogle Scholar
  105. 105.
    Bobadilla JL, Wynn M, Tefera G, Acher CW. Low incidence of paraplegia after thoracic endovascular aneurysm repair with proactive spinal cord protective protocols. J Vasc Surg. 2013;57(6):1537–42.CrossRefPubMedGoogle Scholar
  106. 106.
    Augoustides JG, Stone ME, Drenger B. Novel approaches to spinal cord protection during thoracoabdominal aortic interventions. Curr Opin Anaesthesiol. 2014;27(1):98–105.CrossRefPubMedGoogle Scholar
  107. 107.
    Fedorow CA, Moon MC, Mutch WA, Grocott HP. Lumbar cerebrospinal fluid drainage for thoracoabdominal aortic surgery: rationale and practical considerations for management. Anesth Analg. 2010;111(1):46–58.CrossRefPubMedGoogle Scholar
  108. 108.
    Field M, Doolan J, Safar M, Kuduvalli M, Oo A, Mills K, et al. The safe use of spinal drains in thoracic aortic surgery. Interact Cardiovasc Thorac Surg. 2011;13(6):557–65.CrossRefPubMedGoogle Scholar
  109. 109.
    Cheung AT, Pochettino A, McGarvey ML, Appoo JJ, Fairman RM, Carpenter JP, et al. Strategies to manage paraplegia risk after endovascular stent repair of descending thoracic aortic aneurysms. Ann Thorac Surg. 2005;80(4):1280–8; discussion 8-9.CrossRefPubMedGoogle Scholar
  110. 110.
    Rizvi AZ, Sullivan TM. Incidence, prevention, and management in spinal cord protection during TEVAR. J Vasc Surg. 2010;52(4 Suppl):86s–90s.CrossRefPubMedGoogle Scholar
  111. 111.
    Kise Y, Kuniyoshi Y, Inafuku H, Nagano T, Hirayasu T, Yamashiro S. Directly measuring spinal cord blood flow and spinal cord perfusion pressure via the collateral network: correlations with changes in systemic blood pressure. J Thorac Cardiovasc Surg. 2015;149(1):360–6.CrossRefPubMedGoogle Scholar
  112. 112.
    Chiesa R, Melissano G, Marrocco-Trischitta MM, Civilini E, Setacci F. Spinal cord ischemia after elective stent-graft repair of the thoracic aorta. J Vasc Surg. 2005;42(1):11–7.CrossRefPubMedGoogle Scholar
  113. 113.
    Crawford ES, Svensson LG, Hess KR, Shenaq SS, Coselli JS, Safi HJ, et al. A prospective randomized study of cerebrospinal fluid drainage to prevent paraplegia after high-risk surgery on the thoracoabdominal aorta. J Vasc Surg. 1991;13(1):36–45; discussion -6.CrossRefPubMedGoogle Scholar
  114. 114.
    Chang CK, Chuter TA, Reilly LM, Ota MK, Furtado A, Bucci M, et al. Spinal arterial anatomy and risk factors for lower extremity weakness following endovascular thoracoabdominal aortic aneurysm repair with branched stent-grafts. J Endovasc Ther. 2008;15(3):356–62.CrossRefPubMedGoogle Scholar
  115. 115.
    Coselli JS, LeMaire SA. Left heart bypass reduces paraplegia rates after thoracoabdominal aortic aneurysm repair. Ann Thorac Surg. 1999;67(6):1931–4; discussion 53−8.CrossRefPubMedGoogle Scholar
  116. 116.
    Nijenhuis RJ, Jacobs MJ, Schurink GW, Kessels AG, van Engelshoven JM, Backes WH. Magnetic resonance angiography and neuromonitoring to assess spinal cord blood supply in thoracic and thoracoabdominal aortic aneurysm surgery. J Vasc Surg. 2007;45(1):71–7; discussion 7–8CrossRefPubMedGoogle Scholar
  117. 117.
    Cambria RP, Clouse WD, Davison JK, Dunn PF, Corey M, Dorer D. Thoracoabdominal aneurysm repair: results with 337 operations performed over a 15-year interval. Ann Surg. 2002;236(4):471–9; discussion 9.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Cambria RP, Davison JK, Carter C, Brewster DC, Chang Y, Clark KA, et al. Epidural cooling for spinal cord protection during thoracoabdominal aneurysm repair: a five-year experience. J Vasc Surg. 2000;31(6):1093–102.CrossRefPubMedGoogle Scholar
  119. 119.
    Svensson LG, Hess KR, Coselli JS, Safi HJ. Influence of segmental arteries, extent, and atriofemoral bypass on postoperative paraplegia after thoracoabdominal aortic operations. J Vasc Surg. 1994;20(2):255–62.CrossRefPubMedGoogle Scholar
  120. 120.
    Safi HJ, Miller CC 3rd, Carr C, Iliopoulos DC, Dorsay DA, Baldwin JC. Importance of intercostal artery reattachment during thoracoabdominal aortic aneurysm repair. J Vasc Surg. 1998;27(1):58–66; discussion -8.CrossRefPubMedGoogle Scholar
  121. 121.
    Etz CD, Halstead JC, Spielvogel D, Shahani R, Lazala R, Homann TM, et al. Thoracic and thoracoabdominal aneurysm repair: is reimplantation of spinal cord arteries a waste of time? Ann Thorac Surg. 2006;82(5):1670–7.CrossRefPubMedGoogle Scholar
  122. 122.
    Griepp RB, Ergin MA, Galla JD, Lansman S, Khan N, Quintana C, et al. Looking for the artery of Adamkiewicz: a quest to minimize paraplegia after operations for aneurysms of the descending thoracic and thoracoabdominal aorta. J Thorac Cardiovasc Surg. 1996;112(5):1202–13; discussion 13–5.CrossRefPubMedGoogle Scholar
  123. 123.
    Czerny M, Eggebrecht H, Sodeck G, Verzini F, Cao P, Maritati G, et al. Mechanisms of symptomatic spinal cord ischemia after TEVAR: insights from the European Registry of Endovascular Aortic Repair Complications (EuREC). J Endovasc Ther. 2012;19(1):37–43.CrossRefPubMedGoogle Scholar
  124. 124.
    Amabile P, Grisoli D, Giorgi R, Bartoli JM, Piquet P. Incidence and determinants of spinal cord ischemia in stent-graft repair of the thoracic aorta. Eur J Vasc Endovasc Surg. 2008;35(4):455–61.CrossRefPubMedGoogle Scholar
  125. 125.
    Drinkwater SL, Goebells A, Haydar A, Bourke P, Brown L, Hamady M, et al. The incidence of spinal cord ischemia following thoracic and thoracoabdominal aortic endovascular intervention. Eur J Vasc Endovasc Surg. 2010;40(6):729–35.CrossRefPubMedGoogle Scholar
  126. 126.
    Rizvi AZ, Murad MH, Fairman RM, Erwin PJ, Montori VM. The effect of left subclavian artery coverage on morbidity and mortality in patients undergoing endovascular thoracic aortic interventions: a systematic review and meta-analysis. J Vasc Surg. 2009;50(5):1159–69.CrossRefPubMedGoogle Scholar
  127. 127.
    Patterson BO, Holt PJ, Nienaber C, Fairman RM, Heijmen RH, Thompson MM. Management of the left subclavian artery and neurologic complications after thoracic endovascular aortic repair. J Vasc Surg. 2014;60(6):1491–7.e1.CrossRefPubMedGoogle Scholar
  128. 128.
    Sepehripour AH, Ahmed K, Vecht JA, Anagnostakou V, Suliman A, Ashrafian H, et al. Management of the left subclavian artery during endovascular stent grafting for traumatic aortic injury - a systematic review. Eur J Vasc Endovasc Surg. 2011;41(6):758–69.CrossRefPubMedGoogle Scholar
  129. 129.
    Weigang E, Parker JA, Czerny M, Lonn L, Bonser RS, Carrel TP, et al. Should intentional endovascular stent-graft coverage of the left subclavian artery be preceded by prophylactic revascularization? Eur J Cardiothorac Surg. 2011;40(4):858–68.PubMedPubMedCentralGoogle Scholar
  130. 130.
    De Bakey ME, Cooley DA, Creech O Jr. Resection of the aorta for aneurysms and occlusive disease with particular reference to the use of hypothermia; analysis of 240 cases. Trans Am Coll Cardiol. 1955;5:153–7.Google Scholar
  131. 131.
    Conrad MF, Crawford RS, Davison JK, Cambria RP. Thoracoabdominal aneurysm repair: a 20-year perspective. The Annals of thoracic surgery. 2007;83(2):S856–61; discussion S90–2.CrossRefPubMedGoogle Scholar
  132. 132.
    Kouchoukos NT, Masetti P, Murphy SF. Hypothermic cardiopulmonary bypass and circulatory arrest in the management of extensive thoracic and thoracoabdominal aortic aneurysms. Semin Thorac Cardiovasc Surg. 2003;15(4):333–9.CrossRefPubMedGoogle Scholar
  133. 133.
    Kulik A, Castner CF, Kouchoukos NT. Outcomes after thoracoabdominal aortic aneurysm repair with hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 2011;141(4):953–60.CrossRefPubMedGoogle Scholar
  134. 134.
    Frank SM, Parker SD, Rock P, Gorman RB, Kelly S, Beattie C, et al. Moderate hypothermia, with partial bypass and segmental sequential repair for thoracoabdominal aortic aneurysm. J Vasc Surg. 1994;19(4):687–97.CrossRefPubMedGoogle Scholar
  135. 135.
    Svensson LG, Hess KR, D’Agostino RS, Entrup MH, Hreib K, Kimmel WA, et al. Reduction of neurologic injury after high-risk thoracoabdominal aortic operation. Ann Thorac Surg. 1998;66(1):132–8.CrossRefPubMedGoogle Scholar
  136. 136.
    Griepp RB, Di Luozzo G. Hypothermia for aortic surgery. J Thorac Cardiovasc Surg. 2013;145(3 Suppl):S56–8.CrossRefPubMedGoogle Scholar
  137. 137.
    Bush HL Jr, Hydo LJ, Fischer E, Fantini GA, Silane MF, Barie PS. Hypothermia during elective abdominal aortic aneurysm repair: the high price of avoidable morbidity. J Vasc Surg. 1995;21(3):392–400; discussion -2.CrossRefPubMedGoogle Scholar
  138. 138.
    Safi HJ, Miller CC 3rd, Subramaniam MH, Campbell MP, Iliopoulos DC, O’Donnell JJ, et al. Thoracic and thoracoabdominal aortic aneurysm repair using cardiopulmonary bypass, profound hypothermia, and circulatory arrest via left side of the chest incision. J Vasc Surg. 1998;28(4):591–8.CrossRefPubMedGoogle Scholar
  139. 139.
    Acher CW, Wynn MM, Hoch JR, Popic P, Archibald J, Turnipseed WD. Combined use of cerebral spinal fluid drainage and naloxone reduces the risk of paraplegia in thoracoabdominal aneurysm repair. J Vasc Surg. 1994;19(2):236–46; discussion 47–8.CrossRefPubMedGoogle Scholar
  140. 140.
    Kunihara T, Matsuzaki K, Shiiya N, Saijo Y, Yasuda K. Naloxone lowers cerebrospinal fluid levels of excitatory amino acids after thoracoabdominal aortic surgery. J Vasc Surg. 2004;40(4):681–90.CrossRefPubMedGoogle Scholar
  141. 141.
    Lima B, Nowicki ER, Blackstone EH, Williams SJ, Roselli EE, Sabik JF 3rd, et al. Spinal cord protective strategies during descending and thoracoabdominal aortic aneurysm repair in the modern era: the role of intrathecal papaverine. J Thorac Cardiovasc Surg. 2012;143(4):945–52.e1.CrossRefPubMedGoogle Scholar
  142. 142.
    Nylander WA Jr, Plunkett RJ, Hammon JW Jr, Oldfield EH, Meacham WF. Thiopental modification of ischemic spinal cord injury in the dog. Ann Thorac Surg. 1982;33(1):64–8.CrossRefPubMedGoogle Scholar
  143. 143.
    Fowl RJ, Patterson RB, Gewirtz RJ, Anderson DK. Protection against postischemic spinal cord injury using a new 21-aminosteroid. J Surg Res. 1990;48(6):597–600.CrossRefPubMedGoogle Scholar
  144. 144.
    Apaydin AZ, Buket S. Regional lidocaine infusion reduces postischemic spinal cord injury in rabbits. Tex Heart Inst J. 2001;28(3):172–6.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Wu GJ, Chen WF, Sung CS, Jean YH, Shih CM, Shyu CY, et al. Preventive effects of intrathecal methylprednisolone administration on spinal cord ischemia in rats: the role of excitatory amino acid metabolizing systems. Neuroscience. 2007;147(2):294–303.CrossRefPubMedGoogle Scholar
  146. 146.
    Qayumi AK, Janusz MT, Jamieson WR, Lyster DM. Pharmacologic interventions for prevention of spinal cord injury caused by aortic crossclamping. J Thorac Cardiovasc Surg. 1992;104(2):256–61.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Lim KH, Connolly M, Rose D, Siegman F, Jacobowitz I, Acinapura A, et al. Prevention of reperfusion injury of the ischemic spinal cord: use of recombinant superoxide dismutase. Ann Thorac Surg. 1986;42(3):282–6.CrossRefPubMedGoogle Scholar
  148. 148.
    Smith PD, Bell MT, Puskas F, Meng X, Cleveland JC Jr, Weyant MJ, et al. Preservation of motor function after spinal cord ischemia and reperfusion injury through microglial inhibition. Ann Thorac Surg. 2013;95(5):1647–53.CrossRefPubMedGoogle Scholar
  149. 149.
    Mares JM, Foley LS, Bell MT, Bennett DT, Freeman KA, Meng X, et al. Erythropoietin activates the phosporylated cAMP [adenosine 3’5’ cyclic monophosphate] response element-binding protein pathway and attenuates delayed paraplegia after ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2015;149(3):920–4.CrossRefPubMedGoogle Scholar
  150. 150.
    Gurer B, Kertmen H, Kasim E, Yilmaz ER, Kanat BH, Sargon MF, et al. Neuroprotective effects of testosterone on ischemia/reperfusion injury of the rabbit spinal cord. Injury. 2015;46(2):240–8.CrossRefPubMedGoogle Scholar
  151. 151.
    Freeman KA, Fullerton DA, Foley LS, Bell MT, Cleveland JC Jr, Weyant MJ, et al. Spinal cord protection via alpha-2 agonist-mediated increase in glial cell-line-derived neurotrophic factor. J Thorac Cardiovasc Surg. 2015;149(2):578–84; discussion 84–6.CrossRefPubMedGoogle Scholar
  152. 152.
    Horlocker TT, Wedel DJ, Rowlingson JC, Enneking FK, Kopp SL, Benzon HT, et al. Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine evidence-based guidelines (third edition). Reg Anesth Pain Med. 2010;35(1):64–101.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Wynn MM, Mell MW, Tefera G, Hoch JR, Acher CW. Complications of spinal fluid drainage in thoracoabdominal aortic aneurysm repair: a report of 486 patients treated from 1987 to 2008. J Vasc Surg. 2009;49(1):29–34; discussion -5.CrossRefPubMedGoogle Scholar
  154. 154.
    American Society of Anesthesiologists. Practice advisory for the prevention, diagnosis, and management of infectious complications associated with neuraxial techniques: an updated report by the American Society of Anesthesiologists Task Force on infectious complications associated with neuraxial techniques and the American Society of Regional Anesthesia and Pain Medicine. Anesthesiology. 2017;126(4):585–601.CrossRefGoogle Scholar
  155. 155.
    Australia New Zealand College of Anaesthetists Guidelines for the Management of Major Regional Analgesia. Australia New Zealand College of Anaesthetists; 2011. p. 6.Google Scholar
  156. 156.
    Obstetric Anaesthetists’ Association, Campbell JP, Plaat F, Checketts MR, Bogod D, Tighe S, et al. Safety guideline: skin antisepsis for central neuraxial blockade. Anaesthesia. 2014;69(11):1279–86.CrossRefPubMedGoogle Scholar
  157. 157.
    Tshomba Y, Leopardi M, Mascia D, Kahlberg A, Carozzo A, Magrin S, et al. Automated pressure-controlled cerebrospinal fluid drainage during open thoracoabdominal aortic aneurysm repair. J Vasc Surg. 2017;66:37.CrossRefPubMedGoogle Scholar
  158. 158.
    Wynn MM, Acher C, Marks E, Engelbert T, Acher CW. Postoperative renal failure in thoracoabdominal aortic aneurysm repair with simple cross-clamp technique and 4°C renal perfusion. J Vasc Surg. 2015;61(3):611–22.CrossRefPubMedGoogle Scholar
  159. 159.
    Kashyap VS, Cambria RP, Davison JK, L’Italien GJ. Renal failure after thoracoabdominal aortic surgery. J Vasc Surg. 1997;26(6):949–55; discussion 55–7.CrossRefPubMedGoogle Scholar
  160. 160.
    Dariane C, Coscas R, Boulitrop C, Javerliat I, Vilaine E, Goeau-Brissonniere O, et al. Acute kidney injury after open repair of intact abdominal aortic aneurysms. Ann Vasc Surg. 2017;39:294–300.CrossRefPubMedGoogle Scholar
  161. 161.
    Yeung KK, Groeneveld M, Lu JJ, van Diemen P, Jongkind V, Wisselink W. Organ protection during aortic cross-clamping. Best Pract Res Clin Anaesthesiol. 2016;30(3):305–15.CrossRefPubMedGoogle Scholar
  162. 162.
    Swaminathan M, Stafford-Smith M. Renal dysfunction after vascular surgery. Curr Opin Anaesthesiol. 2003;16(1):45–51.CrossRefPubMedGoogle Scholar
  163. 163.
    Zacharias M, Mugawar M, Herbison GP, Walker RJ, Hovhannisyan K, Sivalingam P, et al. Interventions for protecting renal function in the perioperative period. Cochrane Database Syst Rev. 2013;9:CD003590.Google Scholar
  164. 164.
    Marik PE. Low-dose dopamine: a systematic review. Intensive Care Med. 2002;28(7):877–83.CrossRefPubMedGoogle Scholar
  165. 165.
    Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomized trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet. 2000;356(9248):2139–43.CrossRefPubMedGoogle Scholar
  166. 166.
    Kellum JA, M Decker J. Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med. 2001;29(8):1526–31.CrossRefPubMedGoogle Scholar
  167. 167.
    Friedrich JO, Adhikari N, Herridge MS, Beyene J. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med. 2005;142(7):510–24.CrossRefPubMedGoogle Scholar
  168. 168.
    Doi K, Ogawa N, Suzuki E, Noiri E, Fujita T. Mannitol-induced acute renal failure. Am J Med. 2003;115(7):593–4.CrossRefPubMedGoogle Scholar
  169. 169.
    Perdue PW, Balser JR, Lipsett PA, Breslow MJ. "Renal dose" dopamine in surgical patients: dogma or science? Ann Surg. 1998;227(4):470–3.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Visweswaran P, Massin EK, Dubose TD. Mannitol-induced acute renal failure. J Am Soc Nephrol. 1997;8(6):1028–33.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Subramaniam RM, Suarez-Cuervo C, Wilson RF, Turban S, Zhang A, Sherrod C, et al. Effectiveness of prevention strategies for contrast-induced nephropathy: a systematic review and meta-analysis. Ann Intern Med. 2016;164(6):406–16.CrossRefPubMedGoogle Scholar
  172. 172.
    Xu R, Tao A, Bai Y, Deng Y, Chen G. Effectiveness of N-Acetylcysteine for the prevention of contrast-induced nephropathy: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2016;5(9):e003968.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Durrani NK, Yavuzer R, Mittal V, Bradford MM, Lobocki C, Silberberg B. The effect of gradually increased blood flow on ischemia-reperfusion injury in rat kidney. Am J Surg. 2006;191(3):334–7.CrossRefPubMedGoogle Scholar
  174. 174.
    Köksoy C, LeMaire SA, Curling PE, Raskin SA, Schmittling ZC, Conklin LD, et al. Renal perfusion during thoracoabdominal aortic operations: cold crystalloid is superior to normothermic blood. Ann Thorac Surg. 2002;73(3):730–8.CrossRefPubMedGoogle Scholar
  175. 175.
    Lemaire SA, Jones MM, Conklin LD, Carter SA, Criddell MD, Wang XL, et al. Randomized comparison of cold blood and cold crystalloid renal perfusion for renal protection during thoracoabdominal aortic aneurysm repair. J Vasc Surg. 2009;49(1):11–9; discussion 9.CrossRefPubMedGoogle Scholar
  176. 176.
    Cambria R. Commentary. Thoracic and thoracoabdominal aneurysm repair: is reimplantation of spinal cord arteries a waste of time? Perspect Vasc Surg Endovasc Ther. 2008;20(2):221–3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Helen A. Lindsay
    • 1
  • Coimbatore Srinivas
    • 2
  • Maral Ouzounian
    • 3
  1. 1.Department of Anesthesia & Perioperative MedicineAuckland City HospitalAucklandNew Zealand
  2. 2.Department of AnesthesiaToronto General HospitalTorontoCanada
  3. 3.Division of Cardiovascular Surgery, Department of SurgeryToronto General HospitalTorontoCanada

Personalised recommendations