Essential Anatomy and Physiology of the Respiratory System and the Pulmonary Circulation

  • J. Michael JaegerEmail author
  • Brian J. Titus
  • Randal S. Blank


Knowledge of the clinical anatomy and function of the respiratory system is essential for the safe, efficient, and appropriate perioperative management of intubation, mechanical ventilation, and anesthesia for the thoracic surgical patient. The lung has ten (third-generation airway) bronchopulmonary segments on the right and eight segments on the left that are readily identifiable by fiberoptic bronchoscopy (two segmental bronchi on the left are considered “fused”). The anesthetic employed, both general and regional, will impact the control of respiration, reactivity of the airways, and the patient’s ability to maintain their airway, take a deep breath, and cough. Dynamic influences of ventilatory pattern, posture, body habitus, agitation or pain, and inflammation can cause “air trapping” and drastically reduce alveolar ventilation. The compliance and resistance of the respiratory system will change during the course of surgery, especially those procedures requiring one-lung ventilation, and may necessitate frequent adjustments of the ventilator to optimize gas exchange and reduce lung injury. Many drugs employed during cardiothoracic surgery will impact the lung’s intrinsic mechanisms to match ventilation to perfusion matching either directly on hypoxic pulmonary vasoconstriction (HPV) or indirectly by altering cardiac output or vascular resistance.


Respiratory physiology Lung anatomy Neural control of respiration Lung mechanics Ventilation-perfusion matching Pulmonary circulation Distribution of pulmonary blood flow Hypoxic pulmonary vasoconstriction 


  1. 1.
    Hudgel DW, Hendricks C. Palate and hypopharynx – sites of inspiratory narrowing of the upper airway during sleep. Am Rev Respir Dis. 1988;138:1542–7.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Wheatley JR, Kelly WT, Tully A, Engel LA. Pressure-diameter relationships of the upper airway in awake supine subjects. J Appl Physiol. 1991;70(5):2242–51.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Spann RW, Hyatt RE. Factors affecting upper airway resistance in conscious man. J Appl Physiol. 1971;31(5):708–12.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bartlett D. Respiratory function of the larynx. Physiol Rev. 1989;69:33–57.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Gal TJ. Anatomy and physiology of the respiratory system and the pulmonary circulation. In: Kaplan JA, Slinger PD, editors. Thoracic anesthesia. 3rd ed. Philadelphia: Churchill Livingstone; 2003. p. 57–70.Google Scholar
  6. 6.
    Minnich DJ, Mathisen DJ. Anatomy of the trachea, carina, and bronchi. Thorac Surg Clin. 2007;17:571–85.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Voynow JA, Rubin BK. Mucins, mucus, and sputum. Chest. 2009;135:505–12.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Foster WM, Langenback E, Bergofsky EH. Measurement of tracheal and bronchial mucus velocities in man: relation to clearance. J Appl Physiol Respirat Environ Exercise Physiol. 1980;48(6):965–71.Google Scholar
  9. 9.
    Gonda I. Particle deposition in the human respiratory tract. In: Crystal RG, West JB, Weibel ER, Barnes PJ, editors. The lung: scientific foundations. 2nd ed. Philadelphia: Lipincott-Raven; 1997. p. 2289–308.Google Scholar
  10. 10.
    Gibson GJ, Pride NB, Empey DW. The role of inspiratory dynamic compression in upper airway obstruction. Am Rev Respir Dis. 1973;108:1352–60.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Vincken WG, Gauthier SG, Dollfuss RE, Hanson RE, Darauay CM, Cosio MG. Involvement of upper-airway muscles in extrapyramidal disorders. N Engl J Med. 1984;311:438–42.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Phipps PR, Gonda I, Bailey DC, Borham P, Bautovich G, Anderson SD. Comparison of planar and tomographic gamma scintigraphy to measure the penetrating index of inhaled aerosols. Amer Rev Resp Dis. 1989;139:1516–23.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Lavorini F, Pederson S, Usmani OS. Dilemmas, confusion, and misconceptions related to small airways directed therapy. Chest. 2017;151(6):1345–55.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Usmanni OS. Small-airway disease in asthma: pharmacological considerations. Curr Opin Pulm Med. 2015;21:55–67.CrossRefGoogle Scholar
  15. 15.
    Sealy WC, Connally SR, Dalton ML. Naming the bronchopulmonary segments and the development of pulmonary surgery. Ann Thorac Surg. 1993;55:184–8.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Riquet M. Bronchial arteries and lymphatics of the lung. Thorac Surg Clin. 2007;17:619–38.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Riquet M, Le Pimpec Barthes F, Souilamas R, et al. Thoracic duct tributaries from intrathoracic organs. Ann Thorac Surg. 2002;73:892–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Crapo JD, Barry BE, Gehr P, Bachoen M, Weibel ER. Cell numbers and cell characteristics in the normal lung. Am Rev Respir Dis. 1982;126(3):332–7.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Williams MC. Alveolar type I cells: molecular phenotype and development. Ann Rev Physiol. 2003;65:669–95.CrossRefGoogle Scholar
  20. 20.
    Crapo JD, Harmsen AG, Sherman MP, et al. Pulmonary immunobiology and inflammation in pulmonary diseases. Am J Respir Crit Care Med. 2000;162:1983–6.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Johnston RB. Monocytes and macrophages. N Engl J Med. 1988;318:747–52.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Bienenstock J. Bronchus-associated lymphoid tissue. Int Arch Allergy Appl Immunol. 1985;76:62–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Upham JW, Xi Y. Dendritic cells in human lung disease, recent advances. Chest. 2017;151(3):668–73.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Richardson JB, Ferguson CC. Neuromuscular structure and function in the airways. Fed Proc. 1979;38:292–308.Google Scholar
  25. 25.
    Chowdhuri S, Badr MS. Control of ventilation in health and disease. Chest. 2017;151(4):917–29.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Smith JC, Abdala APL, Borgmann A, et al. Brainstem respiratory networks: building blocks and microcircuits. Trends in Neurosci. 2013;36(3):152–62.CrossRefGoogle Scholar
  27. 27.
    Abdala APL, Rybak IA, Smith JC, et al. Multiple pontomedullary mechanisms of respiratory rhythmogenesis. Respir Physiol Neurobiol. 2009;168:19–25.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Richter DW Smith JC. Respiratory rhythm generation in vivo. Physiology (Bethesda). 2014;29(1):58–71.Google Scholar
  29. 29.
    Guyenet PG. The 2008 Carl Ludwig Lecture: retrotrapezoid nucleus, CO2 homeostasis, and breathing automaticity. J Apply Physiol. 2008;105:404–16.CrossRefGoogle Scholar
  30. 30.
    Morschel M, Deutschmann M. Pontine respiratory activity involved in inspiratory/expiratory phase transition. Phil Trans R Soc B. 2009;364:2517–26.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Dean JB, Nattie EE. Central CO2 chemoreception in cardiorespiratory control. J Appl Physiol. 2010;108:976–8.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bruce EN, Cherniack NS. Central chemoreceptors. J Appl Physiol. 1987;62(2):389–402.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Forster HV, Smith CA. Contributions of central and peripheral chemoreceptors to the ventilator response to CO2/H+. J Appl Physiol. 2010;108:989–94.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Pappenheimer JR, Fencl V, Heisey SR, et al. Role of cerebral fluids in control of respiration as studied in unanesthetized goats. Am J Physiol. 1965;208(3):436–50.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Fencl V, Miller TB, Pappenheimer JR. Studies on the respiratory response to disturbances of acid-base balance, with deductions concerning the ionic composition of cerebral interstitial fluid. Am J Physiol. 1966;210(3):459–72.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Nattie E, Comroe JH Jr. Distinguished Lecture: Central chemoreception: then …and now. J Appl Physiol. 2011;110:1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Sepulveda FV, Cid LP, Teulon J, et al. Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels. Physiol Rev. 2015;95:179–217.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Nattie E, Li A. Central chemoreceptor: locations and functions. Compr Physiol. 2012;2(1):221–54.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Guyenet PG, Bayliss DA, Stornetta RL, et al. Proton detection and breathing regulation by the retrotrapezoid nucleus. J Physiol. 2016;594(6):1529–51.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kumar P, Bin-Jaliah I. Adequate stimuli of the carotid body: more than an oxygen sensor? Respir Physiol Neurobiol. 2007;157:12–21.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Teppema LJ, Dahan A. The ventilator response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol Rev. 2010;90:675–754.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Hornbein TF, Griffo ZJ, Roos A. Quantitation of chemoreceptor activity: interrelation of hypoxia and hypercapnia. J Neurophysiol. 1961;24:561–8.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Hornbein TF, Roos A. Specificity of H ion concentration as a carotid chemoreceptor stimulus. J Appl Physiol. 1963;18(3):580–4.CrossRefGoogle Scholar
  44. 44.
    Rocher A, Geijo-Barrientos E, Caceres AI, et al. Role of voltage-dependent calcium channels in stimulus-secretion coupling in rabbit carotid body chemoreceptor cells. J Physiol. 2005;562(2):407–20.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Turner PJ, Buckler KJ. Oxygen and mitochondrial inhibitors modulate both monomeric and heteromeric TASK-1 and TASK-3 channels in mouse carotid body type-1 cells. J Physiol. 2013;591(23):5977–98.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gonzalez C, Sanz-Alfayate G, Agapito MT, et al. Significance of ROS in oxygen sensing in cell systems with sensitivity to physiological hypoxia. Respir Physiol Neurobiol. 2002;132:17–41.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Prabhakar NR, Peers C. Gasotransmitter regulation of ion channels: a key step in O2 sensing by the carotid body. Physiology. 2014;29:49–57.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lahiri S, Roy A, Baby SM, et al. Oxygen sensing in the body. Prog Biophys Mol Biol. 2006;91:249–86.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Robbins PA. Evidence for interaction between the contributions to ventilation from the central and peripheral chemoreceptors in man. J Physiol. 1988;401:503–18.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Clement ID, Pandit JJ, Bascom DA, et al. An assessment of central-peripheral ventilator chemoreflex interaction using acid and bicarbonate infusions in humans. J Physiol. 1995;485(2):561–70.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Blain GM, Smith CA, Henderson KS, et al. Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO2. J Physiol. 2010;588(13):2455–71.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Smith CA, Blain GM, Henderson KS, et al. Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO2; role of carotid body CO2. J Physiol. 2015;593(18):4225–43.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Barnes PJ. Neural control of airway smooth muscle. Chapter 91. In: Crystal RG, West JB, Barnes PJ, Weibel ER, editors. The lung: scientific foundations. 2nd ed. Philadelphia: Lippincott-Raven Publishers; 1997. p. 1269–85.Google Scholar
  54. 54.
    Belvisi MG. Overview of the innervation of the lung. Curr Opin Pharmacol. 2002;2:211–5.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Caulfield MP. Muscarinic receptors, characterization, coupling and function. Pharmacol Ther. 1993;58:319–79.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Barnes PJ. Modulation of neurotransmission in airways. Physiol Rev. 1992;72:699–729.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    McKenzie DK, Gandevia SC. Skeletal muscle properties: diaphragm and chest wall. In: Crystal RG, West JB, Weibel ER, Barnes PJ, editors. The lung: scientific foundations. 2nd ed. Philadelphia: Lipincott-Raven; 1997. p. 981–91.Google Scholar
  58. 58.
    Coirault C, Chemla D, Lecarpentier Y. Relaxation of the diaphragm. J Appl Physiol. 1999;87(4):1243–52.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–35.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Powers SK, Kavazis AN, Levine S. Prolonged mechanical ventilation alters diaphragmatic structure and function. Crit Care Med. 2009;37(Suppl):S347–53.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Picard M, Jung B, Liang F, et al. Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am J Respir Crit Care Med. 2012;186(11):1140–9.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Levine S, Kaiser L, Leferovich J, et al. Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease. N Engl J Med. 1997;337(25):1799–806.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Levine S, Nguyen T, Kaiser LR, et al. Human diaphragm remodeling associated with chronic obstructive pulmonary disease. Clinical implications. Am J Respir Crit Care Med. 2003;168:706–13.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Ottenheijm CAC, Heunks LMA, Hafmans T, et al. Titin and diaphragm dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;173:527–34.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Loring SH, Topulos GP, Hubmayr RD. Transpulmonary pressure: the importance of precise definitions and limiting assumptions. Am J Respir Crit Care Med. 2016;194(12):1452–7.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Leith DE, Mead J. Mechanisms determining residual volume of the lungs in normal subjects. J Appl Physiol. 1967;23:221–7.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Colin AA, Wohl MEB, Mead J, et al. Transition from dynamically maintained to relaxed end-expiratory volume in human infants. J Appl Physiol. 1989;67:2107–11.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Milic-Emili J, Henderson JAM, Dolovich MB, et al. Regional distribution of inspired gas in the lung. J Appl Physiol. 1966;21:749–59.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    West JB, Dollery CT. Distribution of blood flow and ventilation-perfusion ratio in the lung, measured with radioactive carbon dioxide. J Appl Physiol. 1960;15:405–10.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Bake B, Wood L, Murphy B, et al. Effect of inspiratory flow rate on regional distribution of inspired gas. J Appl Physiol. 1974;37:8–17.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Widdicombe J. Anatomy and physiology of the airway circulation. Am Rev Respir Dis. 1992;146:S3–7.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Pinsky MR. Heart-lung interactions. Curr Opin Crit Care. 2007;13:528–31.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Hamzaoui O, Monnet X, Teboul JL. Pulsus paradoxus. Euro Respir J. 2013;42(6):1696–705.CrossRefGoogle Scholar
  74. 74.
    Pinsky MR. Cardiovascular issues in respiratory care. Chest. 2005;128:592S–7S.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Wise RA, Robotham JL, Summer WR. Effects of spontaneous ventilation on the circulation. Lung. 1981;159:175–86.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Roussos C, Macklem PT. The respiratory muscles. N Engl J Med. 1982;307:786–97.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Aubier M, Viires N, Syllie G, et al. Respiratory muscle contribution to lactic acidosis in low cardiac output. Am Rev Respir Dis. 1982;126:648–52.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Baratz DM, Westbrook PR, Shah PK, et al. Effect of nasal continuous positive airway pressure on cardiac output and oxygen delivery in patients with congestive heart failure. Chest. 1992;102:1397–401.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Glick G, Wechsler AS, Epstein SE. Reflex cardiovascular depression produced by stimulation of pulmonary stretch receptors in the dog. J Clin Invest. 1969;48:467–73.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Anrep GV, Pascual W, Rossler R. Respiratory variations of the heart rate: I. The reflex mechanism of the respiratory arrhythmia. Proc R Soc Lond B Biol Sci. 1936;119:191–217.CrossRefGoogle Scholar
  81. 81.
    Taha BH, Simon PM, Dempsey JA, et al. Respiratory sinus arrhythmia in humans: an obligatory role for vagal feedback from the lungs. J Appl Physiol. 1995;78:638–45.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Persson MG, Lonnqvist PA, Gustafsson LE. Positive end expiratory pressure ventilation elicits increases in endogenously formed nitric oxide as detected in air exhaled by rabbits. Anesthesiology. 1995;82:969–74.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Luce JM. The cardiovascular effects of mechanical ventilation and positive end-expiratory pressure. JAMA. 1984;252:807–11.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Madden JA, Dawson CA, Harder DR. Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J Appl Physiol. 1985;59:113–8.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Hakim TS, Michel RP, Chang HK. Effect of lung inflation on pulmonary vascular resistance by arterial and venous occlusion. J Appl Physiol. 1982;53:1110–5.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Block AJ, Boysen PG, Wynne JW. The origins of cor pulmonale: a hypothesis. Chest. 1979;75:109–10.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Johnston WE, Vinten-Johansen J, Shugart HE, et al. Positive end-expiratory pressure potentiates the severity of canine right ventricular ischemia-reperfusion injury. Am J Physiol. 1992;262:H168–76.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Canada E, Benumof JL, Tousdale FR. Pulmonary vascular resistance correlates in intact normal and abnormal canine lungs. Crit Care Med. 1982;10:719–23.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Vieillard-Baron A, Loubieres Y, Schmitt JM, et al. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol. 1999;87:1644–50.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Guyton AC, Lindsey AW, Abernathy B, et al. Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol. 1957;189:609–15.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Pinsky MR. Instantaneous venous return curves in an intact canine preparation. J Appl Physiol. 1984;56:765–71.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Pinsky MR. Determinants of pulmonary arterial flow variation during respiration. J Appl Physiol. 1984;56:1237–45.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Fessler HE, Brower RG, Wise RA, et al. Effects of positive end-expiratory pressure on the canine venous return curve. Am Rev Respir Dis. 1992;146:4–10.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    van den Berg PCM, Jansen JR, Pinsky MR. Effect of positive pressure on venous return in volume-loaded cardiac surgical patients. J Appl Physiol. 2002;92:1223–31.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Buda AJ, Pinsky MR, Ingels NB Jr, et al. Effect of intrathoracic pressure on left ventricular performance. N Engl J Med. 1979;301:453–9.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Jardin F, Farcot JC, Gueret P, et al. Echocardiographic evaluation of ventricles during continuous positive airway pressure breathing. J Appl Physiol. 1984;56:619–27.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Olsen CO, Tyson GS, Maier GW, et al. Dynamic ventricular interaction in the conscious dog. Circ Res. 1983;52:85–104.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Bell RC, Robotham JL, Badke FR, et al. Left ventricular geometry during intermittent positive pressure ventilation in dogs. J Crit Care. 1987;2:230–44.CrossRefGoogle Scholar
  99. 99.
    Qvist J, Pontoppidan H, Wilson RS, et al. Hemodynamic responses to mechanical ventilation with PEEP: the effect of hypervolemia. Anesthesiology. 1975;42:45–55.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Brinker JA, Weiss JL, Lappe DL, et al. Leftward septal displacement during right ventricular loading in man. Circulation. 1980;61:626–33.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Vatner SF, Rutherford JD. Control of the myocardial contractile state by carotid chemo- and baroreceptor and pulmonary inflation reflexes in conscious dogs. J Clin Invest. 1978;61:1593–601.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Beyar R, Goldstein Y. Model studies of the effects of the thoracic pressure on the circulation. Ann Biomed Eng. 1987;15:373–83.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Pinsky MR, Summer WR, Wise RA, et al. Augmentation of cardiac function by elevation of intrathoracic pressure. J Appl Physiol. 1983;54:950–5.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Denault AY, Gorcsan J III, Pinsky MR. Dynamic effects of positive-pressure ventilation on canine left ventricular pressure-volume relations. J Appl Physiol. 2001;91:298–308.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Butler J. The heart is in good hands. Circulation. 1983;67:1163–8.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Naughton MT, Rahman MA, Hara K, et al. Effect of continuous positive airway pressure on intrathoracic and left ventricular transmural pressures in patients with congestive heart failure. Circulation. 1995;91:1725–31.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Kaneko Y, Floras JS, Usui K, et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N Engl J Med. 2003;348:1233–41.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Ranieri VM, Giuliani R, Mascia L, et al. Patient-ventilator interaction during acute hypercapnia: pressure-support vs. proportional-assist ventilation. J Appl Physiol. 1996;81:426–36.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Ambrosino N, Cobelli F, Torbicki A, et al. Hemodynamic effects of negative-pressure ventilation in patients with COPD. Chest. 1990;97:850–6.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Hurford WE, Lynch KE, Strauss HW, et al. Myocardial perfusion as assessed by thallium-201 scintigraphy during the discontinuation of mechanical ventilation in ventilator-dependent patients. Anesthesiology. 1991;74:1007–16.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Srivastava S, Chatila W, Amoateng-Adjepong Y, et al. Myocardial ischemia and weaning failure in patients with coronary artery disease: an update. Crit Care Med. 1999;27:2109–12.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Rasanen J, Vaisanen IT, Heikkila J, et al. Acute myocardial infarction complicated by left ventricular dysfunction and respiratory failure: the effects of continuous positive airway pressure. Chest. 1985;87:158–62.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Lemaire F, Teboul JL, Cinotti L, et al. Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology. 1988;69:171–9.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Mohsenifar Z, Hay A, Hay J, et al. Gastric intramural pH as a predictor of success or failure in weaning patients from mechanical ventilation. Ann Intern Med. 1993;119:794–8.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Jubran A, Mathru M, Dries D, et al. Continuous recordings of mixed venous oxygen saturation during weaning from mechanical ventilation and the ramifications thereof. Am J Respir Crit Care Med. 1998;158:1763–9.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Straus C, Louis B, Isabey D, et al. Contribution of the endotracheal tube and the upper airway to breathing workload. Am J Respir Crit Care Med. 1998;157:23–30.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Galvin I, Drummond GB, Nirmalan M. Distribution of blood flow and ventilation in the lung: gravity is not the only factor. Brit J Anaesth. 2007;98:420–8.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Hughes M, Point WJB. Gravity is the major factor determining the distribution of blood flow in the human lung. J Appl Physiol. 2008;104:1531–3.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Glenny RW. Counterpoint: Gravity is not the major factor determining the distribution of blood flow in the healthy human lung. J Appl Physiol. 2008;104:1533–5.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Glenny RW, Bernard S, Robertson HT. Gravity is an important but secondary determinant of regional pulmonary blood flow in upright primates. J Appl Physiol. 1999;86:623–32.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Robertson HT, Hlastala MP. Microsphere maps of regional blood flow and regional ventilation. J Appl Physiol. 2007;102:1265–72.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Prisk GK, Guy HJB, Elliott AR, et al. Inhomogeneity of pulmonary perfusion during sustained microgravity on SLS-1. J Appl Physiol. 1994;76:1730–8.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Prisk GK, Guy HJB, Elliott AR, et al. Ventilatory inhomogeneity determined from multiple-breath washouts during sustained microgravity on Spacelab SLS-1. J Appl Physiol. 1995;78:597–607.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Glenny RW, Lamm WJ, Bernard SL, et al. Selected contribution: redistribution of pulmonary perfusion during weightlessness and increased gravity. J Appl Physiol. 2000;89:1239–48.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Weibel ER. Fractal geometry: a design principle for living organisms. Am J Physiol Lung Cell Mol Physiol. 1991;261:L361–9.CrossRefGoogle Scholar
  126. 126.
    Glenny RW. Blood flow distribution in the lung. Chest. 1998;114:8S–16S.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Altemeier WA, McKinney S, Glenny RW. Fractal nature of regional ventilation distribution. J Appl Physiol. 2000;88:1551–7.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Hughes JMB, Glazier JB, Maloney JE, et al. Effect of lung volume on the distribution of pulmonary blood flow in man. Respir Physiol. 1968;4:58–72.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    West JB. Regional differences in gas exchange in the lung of erect man. J Appl Physiol. 1962;17:893–8.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Wagner PD, Dantzker DR, Dueck R, et al. Ventilation-perfusion inequality in chronic obstructive pulmonary disease. J Clin Invest. 1977;59:203–6.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Bradford J, Dean H. The pulmonary circulation. J Physiol. 1894;16:34–96.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Von Euler U, Liljestrand G. Observations on the pulmonary arterial pressure in the cat. Acta Physiol Scand. 1946;12:301–20.CrossRefGoogle Scholar
  133. 133.
    Duke HN. Pulmonary vasomotor responses of isolated perfused cat lungs to anoxia and hypercapnia. Q J Exper Physiol. 1951;36:75–88.CrossRefGoogle Scholar
  134. 134.
    Bergofsky EH, Haas F, Porcelli R. Determination of the sensitive vascular sites from which hypoxia and hypercapnia elicit rises in pulmonary arterial pressure. Fed Proc. 1968;27:1420–5.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Domino KB, Wetstein L, Glasser SA, et al. Influence of mixed venous oxygen tension (PvO2) on blood flow to atelectatic lung. Anesthesiology. 1983;59:428–34.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Marshall C, Marshall BE. Influence of perfusate PO2 on hypoxic pulmonary vasoconstriction in rats. Circ Res. 1983;52:691–6.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Marshall BE, Marshall C, Benumof J, et al. Hypoxic pulmonary vasoconstriction in dogs: effects of lung segment size and oxygen tension. J Appl Physiol Respirat Environ Exercise Physiol. 1981;51:1543–51.Google Scholar
  138. 138.
    Naeije R, Lejeune P, Leeman M, et al. Pulmonary vascular responses to surgical chemodenervation and chemical sympathectomy in dogs. J Appl Physiol. 1989;66:42–50.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Lejeune P, Vachiaery JL, Leeman M, et al. Absence of parasympathetic control of pulmonary vascular pressure-flow plots in hyperoxic and hypoxic dogs. Respir Physiol. 1989;78:123–33.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Robins ED, Theodore J, Burke CM, et al. Hypoxic vasoconstriction persists in the human transplanted lung. Clin Sci. 1987;72:283–7.CrossRefGoogle Scholar
  141. 141.
    Aaronson PI, Robertson TP, Knock GA, et al. Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J Physiol. 2006;570:53–8.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Evans AM. The role of intracellular ion channels in regulating cytoplasmic calcium in pulmonary arterial smooth muscle: which store and where? Adv Exp Biol Med. 2010;661:57–76.CrossRefGoogle Scholar
  143. 143.
    Sylvester JT, Shimoda LA, Aaronson PI, Ward JPT. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92:367–520.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Waypa GB, Chandel NS, Schumacker PT. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res. 2001;88:1259–66.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Evans AM, Dipp M. Hypoxic pulmonary vasoconstriction: cyclic adenosine diphosphate-ribose, smooth muscle Ca2+ stores and the endothelium. Respir Physiol Neurobiol. 2002;132:3–15.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Yamamoto Y, Nakano H, Ide H, et al. Role of airway nitric oxide on the regulation of pulmonary circulation by carbon dioxide. J Appl Physiol. 2001;91:1121–30.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Talbot NP, Balanos GM, Dorrington KL, et al. Two temporal components within the human pulmonary vascular response to ~2 h of isocapnic hypoxia. J Appl Physiol. 2005;98:1125–39.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Weissmann N, Zeller S, Schafer RU, et al. Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol. 2006;34:505–13.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Nunn JF. Factors influencing the arterial oxygen tension during halothane anaesthesia with spontaneous respiration. Br J Anaesth. 1964;36:327–4.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Brismar B, Hedenstierna G, Lundquist H, et al. Pulmonary densities during anesthesia with muscular relaxation – a proposal of atelectasis. Anesthesiology. 1985;62:422–8.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Lundquuist H, Hedenstierna G, Strandberg A, et al. CT-assessment of dependent lung densities in man during general anesthesia. Acta Radiol. 1995;36:626–32.CrossRefGoogle Scholar
  152. 152.
    Reber A, Bein T, Hogman M, et al. Lung aeration and pulmonary gas exchange during lumbar epidural anaesthesia and in the lithotomy position in elderly patients. Anaesthesia. 1998;53:854–61.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Tenling A, Joachimsson PO, Tyden H, et al. Thoracic epidural anesthesia as an adjunct to general anesthesia for cardiac surgery: effects on ventilation-perfusion relationships. Anesthesiology. 1987;66:157–67.CrossRefGoogle Scholar
  154. 154.
    Magnusson L, Spahn DR. New concepts of atelectasis during general anaesthesia. Br J Anaesth. 2003;91:61–72.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Froese AB, Bryan AC. Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology. 1974;41:242–55.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Warner DO, Warner MA, Ritman EL. Atelectasis and chest wall shape during halothane anesthesia. Anesthesiology. 1996;85:49–59.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Reber A, Nylund U, Hedenstierna G. Position and shape of the diaphragm: implications for atelectasis formation. Anaesthesia. 1998;53:1054–61.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Loring SH, Butler JP. Gas exchange in body cavities. In: Farhi LE, Tenney SM, editors. Handbook of physiology. Section 3. The respiratory system, Gas exchange, vol. 4. Bethesda: American Physiological Society; 1987. p. 283–95.Google Scholar
  159. 159.
    Joyce CJ, Baker AB, Kennedy RR. Gas uptake from an unventilated area of the lung: computer model of absorption atelectasis. J Appl Physiol. 1993;74:1107–16.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Joyce CJ, Williams AB. Kinetics of absorption atelectasis during anesthesia: a mathematical model. J Appl Physiol. 1999;86:1116–25.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Rothen HU, Sporre B, Engberg G, et al. Influence of gas composition on recurrence of atelectasis after a re-expansion maneuver during general anesthesia. Anesthesiology. 1995;82:832–42.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Lumb AB, Slinger P. Hypoxic pulmonary vasoconstriction. Physiology and anesthetic implications. Anesthesiology. 2015;122(4):932–46.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Domino KB, Borowec L, Alexander CM, et al. Influence of isoflurane on hypoxic pulmonary vasoconstriction in dogs. Anesthesiology. 1986;64:423–9.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Abe K, Mashimo T, Yoshiya I. Arterial oxygenation and shunt fraction during one-lung ventilation: a comparison of isoflurane and sevoflurane. Anesth Analg. 1998;86:1266–70.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Pagel PS, Fu JL, Damask MC, et al. Desflurane and isoflurane produce similar alterations in systemic and pulmonary hemodynamics and arterial oxygenation in patients undergoing one-lung ventilation during thoracotomy. Anesth Analg. 1998;87:800–7.PubMedPubMedCentralGoogle Scholar
  166. 166.
    Schwarzkopf K, Schreiber T, Preussler N-P, et al. Lung perfusion, shunt fraction, and oxygenation during one-lung ventilation in pigs: the effects of desflurane, isoflurane, and propofol. J Cardiothorac Vasc Anesth. 2003;17:73–5.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Benumof JL, Wahrenbrock EA. Local effects of anesthetics on regional hypoxic pulmonary vasoconstriction. Anesthesiology. 1975;43:525–32.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Reid CW, Slinger PD, Lenis S. A comparison of the effects of propofol-alfentanil versus isoflurane anesthesia on arterial oxygenation during one-lung ventilation. J Cardiothorac Vasc Anesth. 1996;10:860–3.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Beck DH, Doepfmer UR, Sinemus C, et al. Effects of sevoflurane and propofol on pulmonary shunt fraction during one-lung ventilation for thoracic surgery. Br J Anaesth. 2001;86:38–43.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Ishibe Y, Shiokawa Y, Umeda T, et al. The effect of thoracic epidural anesthesia on hypoxic pulmonary vasoconstriction in dogs: an analysis of the pressure-flow curve. Anesth Analg. 1996;82:1049–55.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Parsons GH, Leventhal JP, Hansen MM, et al. Effect of sodium nitroprusside on hypoxic vasoconstriction in the dog. J Appl Physiol Respirat Environ Exercise Physiol. 1981;51:288–92.Google Scholar
  172. 172.
    Casthely PA, Lear S, Cottrell JE, et al. Intrapulmonary shunting during induced hypotension. Anesth Analg. 1982;61:231–5.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Kato R, Sato J, Hishino T. Milrinone decreases both pulmonary arterial and venous resistances in the hypoxic dog. Br J Anaesth. 1998;81:920–4.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Weissmann N, Gerigk B, Kocer O, et al. Hypoxi-induced pulmonary hypertension: different impact of iloprost, sildenafil, and nitric oxide. Respir Med. 2007;101:2125–32.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Reichenberger F, Kohstall MG, Seeger T, et al. Effect of sildenafil on hypoxia-induced changes in pulmonary circulation and right ventricular function. Respir Physiol Neurobiol. 2007;159:196–201.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Fesler P, Pagnamenta A, Rondelet B, et al. Effects of sildenafil on hypoxic pulmonary vascular function in dogs. J Appl Physiol. 2006;101:1085–90.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Kiely DG, Cargill RI, Lipworth BJ. Angiotensin II receptor blockade and effects on pulmonary hemodynamics and hypoxic pulmonary vasoconstriction in humans. Chest. 1996;110:698–703.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Cargill RI, Lipworth BJ. Lisinopril attenuates acute hypoxic pulmonary vasoconstriction in humans. Chest. 1996;109:424–9.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    McMurty IF, Petrun MD, Reeves JT. Lungs from chronically hypoxic rats have decreased pressor response to acute hypoxia. Am J Physiol. 1978;235:H104–9.Google Scholar
  180. 180.
    Weissmann N, Nollen M, Gerigk B, et al. Down-regulation of hypoxic vasoconstriction by chronic hypoxia in rabbits: effects of nitric oxide. Am J Physiol. 2003;284:H931–8.Google Scholar
  181. 181.
    Wagner PD, Laravuso RB, Goldzimmer E, et al. Distribution of ventilation-perfusion ratios in dogs with normal and abnormal lungs. J Appl Physiol. 1975;38(6):1099–109.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • J. Michael Jaeger
    • 1
    Email author
  • Brian J. Titus
    • 1
  • Randal S. Blank
    • 1
  1. 1.Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleUSA

Personalised recommendations