Advertisement

Pulmonary Ultrasound

  • Nathan LudwigEmail author
  • Ahmed F. Hegazy
Chapter

Abstract

Pulmonary ultrasound, as a diagnostic tool, is rapidly increasing in its adoption in acute care specialties. With relative ease, frontline clinicians can learn a few simple pulmonary sonographic signs, enabling them to narrow down the differential diagnosis of respiratory failure in a very expeditious manner. Accurate assessments of lung fluid overload, pneumothorax, lung consolidation, and pleural effusions are all readily performed using ultrasound with much greater sensitivity than chest X-rays. Mastering this technique, however, requires an understanding of the physical principles that are key to the development of pulmonary sonographic artifacts and ultrasound findings. A method of collecting, storing, and labeling images taken in each hemithorax is described in this chapter. In addition, state-of-the-art practical perioperative applications of pulmonary ultrasound are discussed. When used in conjunction with a clinical assessment, pulmonary ultrasound can be used for interval scanning of critically ill patients, eliminating or decreasing the need for serial chest X-rays or CT scans, and, more importantly, guiding informed patient management decisions.

Keywords

Ultrasound Ultrasonography Pulmonary ultrasound Point of care Lung Pleura Perioperative 

Supplementary material

Open image in new windowFig. 28.12
Video 28.1

Lung sliding and A-lines. Image obtained using a curvilinear probe, with rib shadows causing acoustic shadowing. Pleural line shows a slow back and forth movement with respiration (lung sliding). Underneath the pleural line, horizontal equidistant repetitious lines (A-line artifacts) are observed. The presence of both lung sliding and A-lines indicates the absence of pneumothorax and normal lung aeration at the point of probe placement (MOV 1760 kb)

Video 28.2

Lung pulse and A-lines. Image obtained using a phased array probe. Pleural line showing a fast shimmering coinciding with cardiac activity (lung pulse). The presence of a lung pulse indicates the absence of a pneumothorax at the point of probe placement. Underneath the pleural line, a horizontal A-line artifact is observed (MP4 634 kb)

Video 28.3

Absent lung sliding. Pleural line showing no lung sliding. This is suggestive of a pneumothorax but is not specific. Image obtained using a phased array transducer (MP4 221 kb)

Video 28.4

Lung point. The transition point between sliding and absent lung sliding is demonstrated. This is very specific for pneumothorax (specificity 100%) (MP4 201 kb)

Video 28.5

B-lines characteristics. B-lines extending from the pleural line to the end of the screen and moving synchronously with lung sliding. As seen in this video, three or more B-lines (or a coalescence of B-lines) are considered pathological (MP4 450 kb)

Video 28.6

Consolidated (hepatized) lung with dynamic air bronchograms. Consolidated lungs could be secondary to pneumonia or atelectasis. Dynamic air bronchograms (seen in this video) are commonly seen with pneumonia, but are not necessarily specific (MP4 784 kb)

Video 28.7

Pleural effusion (dynamic features). Pleural effusion characterized by being an anechoic space, within typical anatomical boundaries, with dynamic features. Diaphragmatic descent, as a dynamic feature, is demonstrated (MP4 585 kb)

Video 28.8

Plankton sign. Floating debris, moving with cardiac activity and diaphragmatic movement within a pleural effusion, is named the “plankton sign.” Also note the different densities within the effusion fluid which also favors this being an exudative process (MP4 1279 kb)

Video 28.9

B-line predominance in the right anterior chest wall. Multiple vertical hyperechoic comet tails on pulmonary ultrasound. This B-line predominance indicates abnormal lung aeration at the point of probe application (MP4 1069 kb)

Video 28.10

B-line predominance in the right anterior axillary line. A coalescence of B-lines is demonstrated, indicating abnormal lung aeration at the point of probe application. Diffuse homogeneous B-line predominance is very characteristic of pulmonary edema (MP4 708 kb)

References

  1. 1.
    Shriki J. Ultrasound physics. Crit Care Clin. 2014;30(1):1–24. vCrossRefGoogle Scholar
  2. 2.
    Enriquez JL, Wu TS. An introduction to ultrasound equipment and knobology. Crit Care Clin. 2014;30(1):25–45. vCrossRefGoogle Scholar
  3. 3.
    Ihnatsenka B, Boezaart AP. Ultrasound: basic understanding and learning the language. Int J Shoulder Surg. 2010;4(3):55–62.CrossRefGoogle Scholar
  4. 4.
    Lichtenstein DA, Mezière GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest. 2008;134(1):117–25.CrossRefGoogle Scholar
  5. 5.
    Lichtenstein DA. BLUE-protocol and FALLS-protocol: two applications of lung ultrasound in the critically ill. Chest. 2015;147(6):1659–70.CrossRefGoogle Scholar
  6. 6.
    Lichtenstein DA, Menu Y. A bedside ultrasound sign ruling out pneumothorax in the critically ill. Lung sliding. Chest. 1995;108(5):1345–8.CrossRefGoogle Scholar
  7. 7.
    Lichtenstein DA. Lung ultrasound in the critically ill. Ann Intensive Care. 2014;4(1):1.CrossRefGoogle Scholar
  8. 8.
    Lichtenstein DA, Mezière GA, Lagoueyte J-F, Biderman P, Goldstein I, Gepner A. A-Lines and B-Lines. Chest. 2009;136(4):1014–20.CrossRefGoogle Scholar
  9. 9.
    Volpicelli G, Elbarbary M, Blaivas M, Lichtenstein DA, Mathis G, Kirkpatrick AW, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012;38(4):577–91.CrossRefGoogle Scholar
  10. 10.
    Soldati G, Inchingolo R, Smargiassi A, Sher S, Nenna R, Inchingolo CD, et al. Ex vivo lung sonography: morphologic-ultrasound relationship. Ultrasound Med Biol. 2012;38(7):1169–79.CrossRefGoogle Scholar
  11. 11.
    Lichtenstein DA, Mezière G, Lascols N, Biderman P, Courret J-P, Gepner A, et al. Ultrasound diagnosis of occult pneumothorax. Crit Care Med. 2005;33(6):1231–8.CrossRefGoogle Scholar
  12. 12.
    Mayo PH, Doelken P. Pleural ultrasonography. Clin Chest Med. 2006;27(2):215–27.CrossRefGoogle Scholar
  13. 13.
    Lichtenstein D, Meziere G, Biderman P, Gepner A. The comet-tail artifact: an ultrasound sign ruling out pneumothorax. Intensive Care Med. 1999;25(4):383–8.CrossRefGoogle Scholar
  14. 14.
    Volpicelli G. Sonographic diagnosis of pneumothorax. Intensive Care Med. 2011;37(2):224–32.CrossRefGoogle Scholar
  15. 15.
    Lichtenstein D, Meziere G, Biderman P, Gepner A. The “lung point”: an ultrasound sign specific to pneumothorax. Intensive Care Med. 2000;26(10):1434–40.CrossRefGoogle Scholar
  16. 16.
    Nandipati KC, Allamaneni S, Kakarla R, Wong A, Richards N, Satterfield J, et al. Extended focused assessment with sonography for trauma (EFAST) in the diagnosis of pneumothorax: experience at a community based level I trauma center. Injury. Elsevier Ltd. 2011;42(5):511–4.CrossRefGoogle Scholar
  17. 17.
    Gentry Wilkerson R, Stone MB. Sensitivity of bedside ultrasound and supine anteroposterior chest radiographs for the identification of pneumothorax after blunt trauma. Acad Emerg Med. 2010;17(1):11–7.CrossRefGoogle Scholar
  18. 18.
    Volpicelli G, Skurzak S, Boero E, Carpinteri G, Tengattini M, Stefanone V, et al. Lung ultrasound predicts well extravascular lung water but is of limited usefulness in the prediction of wedge pressure. Anesthesiology. 2014;121(2):320–7.CrossRefGoogle Scholar
  19. 19.
    Lee CWC, Kory PD, Arntfield RT. Development of a fluid resuscitation protocol using inferior vena cava and lung ultrasound. J Crit Care. 2016;31(1):96–100.CrossRefGoogle Scholar
  20. 20.
    Peris A, Tutino L, Zagli G, Batacchi S, Cianchi G, Spina R, et al. The use of point-of-care bedside lung ultrasound significantly reduces the number of radiographs and computed tomography scans in critically ill patients. Anesth Analg. 2010;111(3):687–92.CrossRefGoogle Scholar
  21. 21.
    Alzahrani SA, Al-Salamah MA, Al-Madani WH, Elbarbary MA. Systematic review and meta-analysis for the use of ultrasound versus radiology in diagnosing of pneumonia. Crit Ultrasound J. 2017;9(1):6.CrossRefGoogle Scholar
  22. 22.
    Monastesse A, Girard F, Massicotte N, Chartrand-Lefebvre C, Girard M. Lung ultrasonography for the assessment of perioperative atelectasis: a pilot feasibility study. Anesth Analg. 2017;124(2):494–504.CrossRefGoogle Scholar
  23. 23.
    Tusman G, Acosta CM, Nicola M, Esperatti M, Bohm SH, Suarez-Sipmann F. Real-time images of tidal recruitment using lung ultrasound. Crit Ultrasound J. 2015;7(1):19.CrossRefGoogle Scholar
  24. 24.
    Tusman G, Acosta CM, Costantini M. Ultrasonography for the assessment of lung recruitment maneuvers. Crit Ultrasound J. 2016;8(1):8.CrossRefGoogle Scholar
  25. 25.
    Copetti R, Soldati G, Copetti P. Chest sonography: a useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome. Cardiovasc Ultrasound. 2008;6:16.CrossRefGoogle Scholar
  26. 26.
    Schmickl CN, Pannu S, MO A-Q, Alsara A, Kashyap R, Dhokarh R, et al. Decision support tool for differential diagnosis of acute respiratory distress syndrome (ARDS) vs cardiogenic pulmonary edema (CPE): a prospective validation and meta-analysis. Crit Care. 2014;18(6):659.CrossRefGoogle Scholar
  27. 27.
    Bouhemad B, Mongodi S, Via G, Rouquette I. Ultrasound for “lung monitoring” of ventilated patients. Anesthesiology. 2015;122(2):437–47.CrossRefGoogle Scholar
  28. 28.
    Soni NJ, Franco R, Velez MI, Schnobrich D, Dancel R, Restrepo MI, et al. Ultrasound in the diagnosis and management of pleural effusions. J Hosp Med. 2015;10(12):811–6.CrossRefGoogle Scholar
  29. 29.
    Mayo PH, Beaulieu Y, Doelken P, Feller-Kopman D, Harrod C, Kaplan A, et al. American College of Chest Physicians/La Societe de Reanimation de Langue Francaise statement on competence in critical care ultrasonography. Chest. 2009;135(4):1050–60.CrossRefGoogle Scholar
  30. 30.
    Balik M, Plasil P, Waldauf P, Pazout J, Fric M, Otahal M, et al. Ultrasound estimation of volume of pleural fluid in mechanically ventilated patients. Intensive Care Med. 2006;32(2):318–21.CrossRefGoogle Scholar
  31. 31.
    McLoud TC, Flower CD. Imaging the pleura: sonography, CT, and MR imaging. AJR Am J Roentgenol. 1991;156(6):1145–53.CrossRefGoogle Scholar
  32. 32.
    Chen KY, Liaw YS, Wang HC, Luh KT, Yang PC. Sonographic septation: a useful prognostic indicator of acute thoracic empyema. J Ultrasound Med. 2000;19(12):837–43.CrossRefGoogle Scholar
  33. 33.
    Mian A, Chaudhry I, Huang R, Rizk E, Tubbs RS, Loukas M. Brachial plexus anesthesia: a review of the relevant anatomy, complications, and anatomical variations. Clin Anat. 2014;27(2):210–21.CrossRefGoogle Scholar
  34. 34.
    Umbrello M, Formenti P. Ultrasonographic assessment of diaphragm function in critically ill subjects. Respir Care. 2016;61(4):542–55.CrossRefGoogle Scholar
  35. 35.
    Haskins SC, Tsui BC, Nejim JA, Wu CL, Boublik J. Lung ultrasound for the regional anesthesiologist and acute pain specialist. Reg Anesth Pain Med. 2017;42(3):289–98.CrossRefGoogle Scholar
  36. 36.
    Lichtenstein D, Meziere G. A lung ultrasound sign allowing bedside distinction between pulmonary edema and COPD: the comet-tail artifact. Intensive Care Med. 1998;24(12):1331–4.CrossRefGoogle Scholar
  37. 37.
    Cardinale L, Priola AM, Moretti F, Volpicelli G. Effectiveness of chest radiography, lung ultrasound and thoracic computed tomography in the diagnosis of congestive heart failure. World J Radiol. 2014;6(6):230–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of AnesthesiologyWestern University, London Health SciencesLondonCanada
  2. 2.Departments of Anesthesiology and Critical Care MedicineWestern University, London Health SciencesLondonCanada

Personalised recommendations