Advertisement

Intravenous Anesthesia for Thoracic Procedures

  • Javier D. LasalaEmail author
  • Ron V. Purugganan
Chapter

Abstract

Total intravenous anesthesia (TIVA) is indicated for procedures in which inhalational anesthetics may not be safely or effectively delivered, including endobronchial procedures using flexible or rigid bronchoscopy and proximal airway-disrupting surgeries. TIVA may also be beneficial in lung volume reduction surgery, lung transplantation, and thymectomy. TIVA is safer and more practical for thoracic procedures performed outside of the operating room, such as off-site locations, military field, or impoverished areas of the world. Target-controlled infusion (TCI) is a relatively new delivery system for TIVA that is based on pharmacokinetic models to optimize intravenous anesthetic delivery. TCI has many advantages over conventional calculator pumps but is not currently available in the United States. Because well-established MAC-type systems for intravenous anesthetics are not available, anesthetic depth monitors are useful in monitoring patients undergoing TIVA. Propofol, dexmedetomidine, ketamine, lidocaine, and remifentanil may be used in combination with anesthetic depth monitoring to execute an effective TIVA regimen. This chapter reviews the balanced TIVA technique currently used at the University of Texas MD Anderson Cancer Center.

Keywords

Intravenous Anesthesia Procedure Shunt Ventilation 

Supplementary material

References

  1. 1.
    Abe K, Shimizu T, Takashina M, Shiozaki H, Yoshiya I. The effects of propofol, isoflurane, and sevoflurane on oxygenation and shunt fraction during one-lung ventilation. Anesth Analg. 1998;87(5):1164–9.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Pilotti L, Torresini G, Crisci R, De Sanctis A, De Sanctis C. Total intravenous anesthesia in thoracotomy with one-lung ventilation. Minerva Anestesiol. 1999;65(7–8):483–9.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Ozcan PE, Senturk M, Sungur Ulke Z, Toker A, Dilege S, Ozden E, et al. Effects of thoracic epidural anaesthesia on pulmonary venous admixture and oxygenation during one-lung ventilation. Acta Anaesthesiol Scand. 2007;51(8):1117–22.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Koishi K, Miyazaki N, Ooe Y. Changes in SpO2 during total intravenous anesthesia combined with propofol and SpO2 during one-lung anesthesia ventilation. Masui. 1999;48(1):53–6.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Ryu CG, Min SW, Kim J, Han SH, Do SH, Kim CS. Effect of remifentanil on arterial oxygenation during one-lung ventilation. J Int Med Res. 2010;38(5):1749–58.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Beck DH, Doepfmer UR, Sinemus C, Bloch A, Schenk MR, Kox WJ. Effects of sevoflurane and propofol on pulmonary shunt fraction during one-lung ventilation for thoracic surgery. Br J Anaesth. 2001;86(1):38–43.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Pruszkowski O, Dalibon N, Moutafis M, Jugan E, Law-Koune JD, Laloe PA, et al. Effects of propofol vs sevoflurane on arterial oxygenation during one-lung ventilation. Br J Anaesth. 2007;98(4):539–44.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Yondov D, Kounev V, Ivanov O, Prisadov G, Semerdjieva M. A comparative study of the effect of halothane, isoflurane and propofol on partial arterial oxygen pressure during one-lung ventilation in thoracic surgery. Folia Med (Plovdiv). 1999;41(3):45–51.Google Scholar
  9. 9.
    Von Dossow V, Welte M, Zaune U, Martin E, Walter M, Ruckert J, et al. Thoracic epidural anesthesia combined with general anesthesia: the preferred anesthetic technique for thoracic surgery. Anesth Analg. 2001;92(4):848–54.CrossRefGoogle Scholar
  10. 10.
    Votta-Velis EG, Minshall RD, Visintine DJ, Castellon M, Balyasnikova IV. Propofol attenuates endotoxin-induced endothelial cell injury, angiotensin-converting enzyme shedding, and lung edema. Anesth Analg. 2007;105(5):1363–70, table of contents.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    An K, Shu H, Huang W, Huang X, Xu M, Yang L, et al. Effects of propofol on pulmonary inflammatory response and dysfunction induced by cardiopulmonary bypass. Anaesthesia. 2008;63(11):1187–92.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Schilling T, Kozian A, Kretzschmar M, Huth C, Welte T, Buhling F, et al. Effects of propofol and desflurane anaesthesia on the alveolar inflammatory response to one-lung ventilation. Br J Anaesth. 2007;99(3):368–75.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Schilling T, Kozian A, Huth C, Buhling F, Kretzschmar M, Welte T, et al. The pulmonary immune effects of mechanical ventilation in patients undergoing thoracic surgery. Anesth Analg. 2005;101(4):957–65, table of contentsPubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    De Conno E, Steurer MP, Wittlinger M, Zalunardo MP, Weder W, Schneiter D, et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology. 2009;110(6):1316–26.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Huang CH, Wang YP, Wu PY, Chien CT, Cheng YJ. Propofol infusion shortens and attenuates oxidative stress during one lung ventilation. Acta Anaesthesiol Taiwanica. 2008;46(4):160–5.CrossRefGoogle Scholar
  16. 16.
    Hu XL, Tang HH, Zhou ZG, Yin F, Liu WJ. The effect of sevoflurane inhalation anesthesia only and propofol total intravenous anesthesia on perioperative cytokine balance in lung cancer patients. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2011;27(6):659–61.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Wakabayashi S, Yamaguchi K, Kumakura S, Murakami T, Someya A, Kajiyama Y, et al. Effects of anesthesia with sevoflurane and propofol on the cytokine/chemokine production at the airway epithelium during esophagectomy. Int J Mol Med. 2014;34(1):137–44.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Wigmore TJ, Mohammed K, Jhanji S. Long-term survival for patients undergoing volatile versus IV anesthesia for cancer surgery: a retrospective analysis. Anesthesiology. 2016;124(1):69–79.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Lee JJ, Kim GH, Kim JA, Yang M, Ahn HJ, Sim WS, et al. Comparison of pulmonary morbidity using sevoflurane or propofol-remifentanil anesthesia in an Ivor Lewis operation. J Cardiothorac Vasc Anesth. 2012;26(5):857–62.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Grillo HC. Development of tracheal surgery: a historical review. Part 1: techniques of tracheal surgery. Ann Thorac Surg. 2003;75(2):610–9.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hartigan PM, Pedoto A. Anesthetic considerations for lung volume reduction surgery and lung transplantation. Thorac Surg Clin. 2005;15(1):143–57.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Stoelting R. Pharmacology and physiology in anesthetic practice. 3rd ed. Philadelphia: Lippincott-Raven; 1999.Google Scholar
  23. 23.
    Sullivan EA. Anesthetic considerations for special thoracic procedures. Thorac Surg Clin. 2005;15(1):131–42.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Abel M, Eisenkraft JB. Anesthetic implications of myasthenia gravis. Mt Sinai J Med. 2002;69(1–2):31–7.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Bagshaw O. A combination of total intravenous anesthesia and thoracic epidural for thymectomy in juvenile myasthenia gravis. Paediatr Anaesth. 2007;17(4):370–4.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Ng JM. Total intravenous anesthesia with propofol and remifentanil for video-assisted thoracoscopic thymectomy in patients with myasthenia gravis. Anesth Analg. 2006;103(1):256–7.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Sherman J, Le C, Lamers V, Eckelman M. Life cycle greenhouse gas emissions of anesthetic drugs. Anesth Analg. 2012;114(5):1086–90.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Speicher A, Jessberger J, Braun R, Hollnberger H, Stigler F, Manz R. Postoperative pulmonary function after lung surgery. Total intravenous anesthesia with propofol in comparison to balanced anesthesia with isoflurane. Anaesthesist. 1995;44(4):265–73.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Satani M, Hamada T, Nakada K, Umemoto Y, Fujii T, Takaki O. Comparison of total intravenous anesthesia and inhalation anesthesia regarding hormonal responses during lung lobectomy. Masui. 2005;54(10):1109–15.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Hohlrieder M, Tiefenthaler W, Klaus H, Gabl M, Kavakebi P, Keller C, et al. Effect of total intravenous anaesthesia and balanced anaesthesia on the frequency of coughing during emergence from the anaesthesia. Br J Anaesth. 2007;99:587.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Ledowski T, Paech MJ, Patel B, Schug SA. Bronchial mucus transport velocity in patients receiving propofol and remifentanil versus sevoflurane and remifentanil anesthesia. Anesth Analg. 2006;102(5):1427–30.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ledowski T, Bein B, Hanss R, Paris A, Fudickar W, Scholz J, et al. Neuroendocrine stress response and heart rate variability: a comparison of total intravenous versus balanced anesthesia. Anesth Analg. 2005;101(6):1700–5.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kotani N, Hashimoto H, Sessler DI, Yasuda T, Ebina T, Muraoka M, et al. Expression of genes for proinflammatory cytokines in alveolar macrophages during propofol and isoflurane anesthesia. Anesth Analg. 1999;89(5):1250–6.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Dabir S, Mohammad-Taheri Z, Parsa T, Abbasi-Nazari M, Radpay B, Radmand G. Effects of propofol versus isoflurane on liver function after open thoracotomy. Asian Cardiovasc Thorac Ann. 2015;23(3):292–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Song JG, Shin JW, Lee EH, Choi DK, Bang JY, Chin JH, et al. Incidence of post-thoracotomy pain: a comparison between total intravenous anaesthesia and inhalation anaesthesia. Eur J Cardiothorac Surg. 2012;41(5):1078–82.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kamibayashi T, Maze M. Clinical uses of alpha2 -adrenergic agonists. Anesthesiology. 2000;93(5):1345–9.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Hsu YW, Cortinez LI, Robertson KM, Keifer JC, Sum-Ping ST, Moretti EW, et al. Dexmedetomidine pharmacodynamics: part I: crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology. 2004;101(5):1066–76.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Jalonen J, Hynynen M, Kuitunen A, Heikkila H, Perttila J, Salmenpera M, et al. Dexmedetomidine as an anesthetic adjunct in coronary artery bypass grafting. Anesthesiology. 1997;86(2):331–45.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    McCutcheon CA, Orme RM, Scott DA, Davies MJ, McGlade DP. A comparison of dexmedetomidine versus conventional therapy for sedation and hemodynamic control during carotid endarterectomy performed under regional anesthesia. Anesth Analg. 2006;102(3):668–75.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Aho M, Erkola O, Kallio A, Scheinin H, Korttila K. Dexmedetomidine infusion for maintenance of anesthesia in patients undergoing abdominal hysterectomy. Anesth Analg. 1992;75(6):940–6.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Alhashemi JA, Kaki AM. Dexmedetomidine in combination with morphine PCA provides superior analgesia for shockwave lithotripsy. Can J Anaesth. 2004;51(4):342–7.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Arain SR, Ruehlow RM, Uhrich TD, Ebert TJ. The efficacy of dexmedetomidine versus morphine for postoperative analgesia after major inpatient surgery. Anesth Analg. 2004;98(1):153–8, table of contents.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Sturaitis MK, Kroin JS, Swamidoss CP, Cerullo LJ, Tuman KJ. Effects of intraoperative dexmedetomidine infusion on hemodynamic stability during brain tumor resection. Anesthesiology. 2002;97:A310.CrossRefGoogle Scholar
  44. 44.
    Unlugenc H, Gunduz M, Guler T, Yagmur O, Isik G. The effect of pre-anaesthetic administration of intravenous dexmedetomidine on postoperative pain in patients receiving patient-controlled morphine. Eur J Anaesthesiol. 2005;22(5):386–91.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Wahlander S, Frumento RJ, Wagener G, Saldana-Ferretti B, Joshi RR, Playford HR, et al. A prospective, double-blind, randomized, placebo-controlled study of dexmedetomidine as an adjunct to epidural analgesia after thoracic surgery. J Cardiothorac Vasc Anesth. 2005;19(5):630–5.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Aantaa R, Jaakola ML, Kallio A, Kanto J. Reduction of the minimum alveolar concentration of isoflurane by dexmedetomidine. Anesthesiology. 1997;86(5):1055–60.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Fragen RJ, Fitzgerald PC. Effect of dexmedetomidine on the minimum alveolar concentration (MAC) of sevoflurane in adults age 55 to 70 years. J Clin Anesth. 1999;11(6):466–70.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Ramsay MA, Luterman DL. Dexmedetomidine as a total intravenous anesthetic agent. Anesthesiology. 2004;101(3):787–90.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Taittonen MT, Kirvela OA, Aantaa R, Kanto JH. Effect of clonidine and dexmedetomidine premedication on perioperative oxygen consumption and haemodynamic state. Br J Anaesth. 1997;78(4):400–6.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Talke P, Li J, Jain U, Leung J, Drasner K, Hollenberg M, et al. Effects of perioperative dexmedetomidine infusion in patients undergoing vascular surgery. The Study of Perioperative Ischemia Research Group. Anesthesiology. 1995;82(3):620–33.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Mukhtar AM, Obayah EM, Hassona AM. The use of dexmedetomidine in pediatric cardiac surgery. Anesth Analg. 2006;103(1):52–6, table of contents.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Frumento RJ, Logginidou HG, Wahlander S, Wagener G, Playford HR, Sladen RN. Dexmedetomidine infusion is associated with enhanced renal function after thoracic surgery. J Clin Anesth. 2006;18(6):422–6.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    But AK, Ozgul U, Erdil F, Gulhas N, Toprak HI, Durmus M, et al. The effects of pre-operative dexmedetomidine infusion on hemodynamics in patients with pulmonary hypertension undergoing mitral valve replacement surgery. Acta Anaesthesiol Scand. 2006;50(10):1207–12.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003;98(2):428–36.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Venn RM, Hell J, Grounds RM. Respiratory effects of dexmedetomidine in the surgical patient requiring intensive care. Crit Care. 2000;4(5):302–8.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Grant SA, Breslin DS, MacLeod DB, Gleason D, Martin G. Dexmedetomidine infusion for sedation during fiberoptic intubation: a report of three cases. J Clin Anesth. 2004;16(2):124–6.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Dong CS, Zhang J, Lu Q, Sun P, Yu JM, Wu C, et al. Effect of dexmedetomidine combined with sufentanil for post- thoracotomy intravenous analgesia:a randomized, controlled clinical study. BMC Anesthesiol. 2017;17(1):33.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Moghaddam MJ, Barkhori A, Mirkheshti A, Hashemian M, Mohajerani SA. The effect of pre-emptive dexmedetomidine on the incidence of post-thoracotomy pain syndrome in patients undergoing coronary artery bypass grafting. Anesth Pain Med. 2016;6(3):e36344.Google Scholar
  59. 59.
    Ramsay MA, Newman KB, Leeper B, Hamman BL, Hebeler RF Jr, Henry AC, et al. Dexmedetomidine infusion for analgesia up to 48 hours after lung surgery performed by lateral thoracotomy. Proc (Bayl Univ Med Cent). 2014;27(1):3–10.CrossRefGoogle Scholar
  60. 60.
    Talke P, Richardson CA, Scheinin M, Fisher DM. Postoperative pharmacokinetics and sympatholytic effects of dexmedetomidine. Anesth Analg. 1997;85(5):1136–42.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Talke P, Tayefeh F, Sessler DI, Jeffrey R, Noursalehi M, Richardson C. Dexmedetomidine does not alter the sweating threshold, but comparably and linearly decreases the vasoconstriction and shivering thresholds. Anesthesiology. 1997;87(4):835–41.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Moon T, Tsai JY, Vachhani S, Peng SP, Feng L, Vaporciyan AA, et al. The use of intraoperative dexmedetomidine is not associated with a reduction in acute kidney injury after lung cancer surgery. J Cardiothorac Vasc Anesth. 2016;30(1):51–5.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Mason P. Remifentanil. Intensive Crit Care Nurs. 2002;18(6):355–7.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Suzuki M, Haraguti S, Sugimoto K, Kikutani T, Shimada Y, Sakamoto A. Low-dose intravenous ketamine potentiates epidural analgesia after thoracotomy. Anesthesiology. 2006;105(1):111–9.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Fiorelli A, Mazzella A, Passavanti B, Sansone P, Chiodini P, Iannotti M, et al. Is pre-emptive administration of ketamine a significant adjunction to intravenous morphine analgesia for controlling postoperative pain? A randomized, double-blind, placebo-controlled clinical trial. Interact Cardiovasc Thorac Surg. 2015;21(3):284–90.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Moyse DW, Kaye AD, Diaz JH, Qadri MY, Lindsay D, Pyati S. Perioperative ketamine administration for thoracotomy pain. Pain Physician. 2017;20(3):173–84.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Reddi D. Preventing chronic postoperative pain. Anaesthesia. 2016;71(Suppl 1):64–71.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Groudine SB, Fisher HA, Kaufman RP Jr, Patel MK, Wilkins LJ, Mehta SA, et al. Intravenous lidocaine speeds the return of bowel function, decreases postoperative pain, and shortens hospital stay in patients undergoing radical retropubic prostatectomy. Anesth Analg. 1998;86(2):235–9.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Kaba A, Laurent SR, Detroz BJ, Sessler DI, Durieux ME, Lamy ML, et al. Intravenous lidocaine infusion facilitates acute rehabilitation after laparoscopic colectomy. Anesthesiology. 2007;106(1):11–8; discussion 5–6.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Koppert W, Weigand M, Neumann F, Sittl R, Schuettler J, Schmelz M, et al. Perioperative intravenous lidocaine has preventive effects on postoperative pain and morphine consumption after major abdominal surgery. Anesth Analg. 2004;98(4):1050–5, table of contents.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Lauwick S, Kim DJ, Michelagnoli G, Mistraletti G, Feldman L, Fried G, et al. Intraoperative infusion of lidocaine reduces postoperative fentanyl requirements in patients undergoing laparoscopic cholecystectomy. Can J Anaesth. 2008;55(11):754–60.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Saadawy IM, Kaki AM, Abd El Latif AA, Abd-Elmaksoud AM, Tolba OM. Lidocaine vs. magnesium: effect on analgesia after a laparoscopic cholecystectomy. Acta Anaesthesiol Scand. 2010;54(5):549–56.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Vigneault L, Turgeon AF, Cote D, Lauzier F, Zarychanski R, Moore L, et al. Perioperative intravenous lidocaine infusion for postoperative pain control: a meta-analysis of randomized controlled trials. Can J Anaesth. 2011;58(1):22–37.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Wu CT, Borel CO, Lee MS, Yu JC, Liou HS, Yi HD, et al. The interaction effect of perioperative cotreatment with dextromethorphan and intravenous lidocaine on pain relief and recovery of bowel function after laparoscopic cholecystectomy. Anesth Analg. 2005;100(2):448–53.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Bakan M, Umutoglu T, Topuz U, Uysal H, Bayram M, Kadioglu H, et al. Opioid-free total intravenous anesthesia with propofol, dexmedetomidine and lidocaine infusions for laparoscopic cholecystectomy: a prospective, randomized, double-blinded study. Braz J Anesthesiol. 2015;65(3):191–9.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Lauretti GR. Mechanisms of analgesia of intravenous lidocaine. Rev Bras Anestesiol. 2008;58(3):280–6.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Viviand X, Leone M. Induction and maintenance of intravenous anaesthesia using target-controlled infusion systems. Best Pract Res Clin Anaesthesiol. 2001;15(1):19–33.CrossRefGoogle Scholar
  78. 78.
    Egan TD. Target-controlled drug delivery: progress toward an intravenous “vaporizer” and automated anesthetic administration. Anesthesiology. 2003;99(5):1214–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Kruger-Thiemer E. Continuous intravenous infusion and multicompartment accumulation. Eur J Pharmacol. 1968;4(3):317–24.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Schwilden H. A general method for calculating the dosage scheme in linear pharmacokinetics. Eur J Clin Pharmacol. 1981;20(5):379–86.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Egan TD. Advances in the clinical pharmacology of intravenous anesthetics: pharmacokinetic, pharmacodynamic, pharmaceutical, and technological considerations. ASA Refresher Courses Anesthesiol. 2004;32(1):71–83.CrossRefGoogle Scholar
  82. 82.
    Varvel JR, Donoho DL, Shafer SL. Measuring the predictive performance of computer-controlled infusion pumps. J Pharmacokinet Biopharm. 1992;20(1):63–94.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Glass PJ, Jacobs JR, Reeves JG. Intravenous drug delivery. In: Milder RD, editor. Anesthesia. 3rd ed. New York: Churchill Livingstone; 1990. p. 367–88.Google Scholar
  84. 84.
    Van Poucke GE, Bravo LJ, Shafer SL. Target controlled infusions: targeting the effect site while limiting peak plasma concentration. IEEE Trans Biomed Eng. 2004;51(11):1869–75.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Van den Nieuwenhuyzen MC, Engbers FH, Burm AG, Vletter AA, Van Kleef JW, Bovill JG. Target-controlled infusion of alfentanil for postoperative analgesia: a feasibility study and pharmacodynamic evaluation in the early postoperative period. Br J Anaesth. 1997;78(1):17–23.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology. 1992;76(3):334–41.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Dryden PE. Target-controlled infusions: paths to approval. Anesth Analg. 2016;122(1):86–9.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Absalom AR, Glen JI, Zwart GJ, Schnider TW, Struys MM. Target-controlled infusion: a mature technology. Anesth Analg. 2016;122(1):70–8.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Bruhn J, Myles PS, Sneyd R, Struys MM. Depth of anaesthesia monitoring: what’s available, what’s validated and what’s next? Br J Anaesth. 2006;97(1):85–94.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Schneider G, Gelb AW, Schmeller B, Tschakert R, Kochs E. Detection of awareness in surgical patients with EEG-based indices--bispectral index and patient state index. Br J Anaesth. 2003;91(3):329–35.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Nordstrom O, Engstrom AM, Persson S, Sandin R. Incidence of awareness in total i.v. anaesthesia based on propofol, alfentanil and neuromuscular blockade. Acta Anaesthesiol Scand. 1997;41(8):978–84.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Leonard IE, Myles PS. Target-controlled intravenous anaesthesia with bispectral index monitoring for thoracotomy in a patient with severely impaired left ventricular function. Anaesth Intensive Care. 2000;28(3):318–21.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Monk TG, Saini V, Weldon BC, Sigl JC. Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg. 2005;100(1):4–10.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Ickeringill M, Shehabi Y, Adamson H, Ruettimann U. Dexmedetomidine infusion without loading dose in surgical patients requiring mechanical ventilation: haemodynamic effects and efficacy. Anaesth Intensive Care. 2004;32(6):741–5.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Rice DC, Cata JP, Mena GE, Rodriguez-Restrepo A, Correa AM, Mehran RJ. Posterior intercostal nerve block with liposomal bupivacaine: an alternative to thoracic epidural analgesia. Ann Thorac Surg. 2015;99(6):1953–60.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology and Perioperative MedicineThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Anesthesiology and Perioperative MedicineThe University of Texas MD Anderson Cancer Center, Cardiothoracic Anesthesia Group, Unit 409, Faculty CenterHoustonUSA

Personalised recommendations