Perioperative Lung Injury

  • Peter SlingerEmail author


Traditional patterns of mechanical ventilation with large (e.g., 10–12 mL/kg) tidal volumes and without positive end-expiratory pressure (PEEP) cause a subclinical injury in healthy lungs in proportion to the duration of ventilation. Perioperative acute lung injury becomes clinically important when injurious ventilation patterns are used in patients who have other concomitant lung injuries such as large pulmonary resection, cardiopulmonary bypass, or transfusion-related lung injury. Lung-protective patterns of mechanical ventilation, using more physiologic tidal volumes and appropriate PEEP, reduce the severity of this lung injury. A recent decrease in the incidence of lung injury after pulmonary resection is primarily due to a decrease in the frequency of pneumonectomies.


Lung Ventilation Atelectasis Injury Pneumonectomies 

Supplementary material


  1. 1.
    ARDS Definition Task Force. Acute respiratory distress syndrome, the Berlin Definition. JAMA. 2012;307:2526–33.Google Scholar
  2. 2.
    Licker M, Widikker I, Robert J, et al. Operative mortality and respiratory complications after lung resection for cancer: impact of chronic obstructive pulmonary disease and time trends. Ann Thorac Surg. 2006;81:1830–8.CrossRefGoogle Scholar
  3. 3.
    Alam N, Park BM, Wilton A, et al. Incidence and risk factors for lung injury after lung cancer resection. Ann Thorac Surg. 2007;84:1085–91.CrossRefGoogle Scholar
  4. 4.
    Bendixen HH, Hedley-White J, Laver MB. Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation: a concept of atelectasis. N Engl J Med. 1963;96:156–66.Google Scholar
  5. 5.
    Tenny SM, Remmers JE. Comparative quantitative morphology of the mammalian lung: diffusing area. Nature. 1963;197:54–6.CrossRefGoogle Scholar
  6. 6.
    Katz JA, Laverne RG, Fairley HB, Thomas AN. Pulmonary oxygen exchange during endobronchial anesthesia: effect of tidal volume and PEEP. Anesthesiology. 1982;56:164–71.CrossRefGoogle Scholar
  7. 7.
    Karzai W, Schwarzkopf K. Hypoxemia during one-lung ventilation. Anesthesiology. 2009;110:1402–11.CrossRefGoogle Scholar
  8. 8.
    Gajic O, Dara SI, Mendez JL, et al. Ventilator associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;32:1817–24.CrossRefGoogle Scholar
  9. 9.
    Gajic O, Frutos-Vivar F, Esteban A, et al. Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intens Care Med. 2005;31:922–6.CrossRefGoogle Scholar
  10. 10.
    Michelet P, D’Journo X-B, Roch A, et al. Protective ventilation influences systemic inflammation after esophagectomy. Anesthesiology. 2006;105:911–9.CrossRefGoogle Scholar
  11. 11.
    Choi G, Wolthuis EK, Bresser P, et al. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without lung injury. Anesthesiology. 2006;105:689–95.CrossRefGoogle Scholar
  12. 12.
    Lindberg P, Gunnarsson L, Tokics L, et al. Atelectasis and lung function in the postoperative period. Acta Anaesthesiol Scand. 1992;36:546–53.CrossRefGoogle Scholar
  13. 13.
    Tusman G, Bohm SH, Suarez-Sipmann F. Alveolar recruitment improves ventilatory efficiency of the lungs during anesthesia. Can J Anesth. 2004;51:723–7.CrossRefGoogle Scholar
  14. 14.
    Duggan M, Kavanagh B. Pulmonary Atelectasis a pathological perioperative entity. Anesthesiology. 2005;102:838–54.CrossRefGoogle Scholar
  15. 15.
    Tsuchida S, Engelberts D, Peltekova V, et al. Atelectasis causes alveolar injury in nonatelectatic lung regions. Am J Respir Crit Care Med. 2006;174:279–89.CrossRefGoogle Scholar
  16. 16.
    Ballantyne JC, Carr DB, deFerranti S. The comparative effects of postoperative analgesic therapies on pulmonary outcome: cumulative meta-analysis of randomized, controlled trials. Anesth Analg. 1998;86:598–612.CrossRefGoogle Scholar
  17. 17.
    Rigg J, Jamrozik K, Myles P, et al. Epidural anaesthesia and analgesia and outcome of major surgery: a randomized trial. Lancet. 2002;359:1276–82.CrossRefGoogle Scholar
  18. 18.
    Squadrone V, Coha M, Cerutti E, et al. Continuous positive airway pressure for treatment of postoperative hypoxemia. JAMA. 2005;293:589–95.CrossRefGoogle Scholar
  19. 19.
    Grichnik KP, D’Amico TA. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Sem Cardiothorac Vasc Anesth. 2004;8:317–34.CrossRefGoogle Scholar
  20. 20.
    Lohser J, Slinger P. Lung injury after one-lung ventilation: a review of the pathophysiologic mechanisms affecting the ventilated and collapsed lung. Anesth Analg. 2015;121:302–18.CrossRefGoogle Scholar
  21. 21.
    Zeldin RA, Normadin D, Landtwing BS, Peters RM. Postpneumonectomy pulmonary edema. J Thorac Cardiovasc Surg. 1984;87:359–65.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Slinger P. Post-pneumonectomy pulmonary edema: is anesthesia to blame? Curr Opin Anesthesiol. 1999;12:49–54.CrossRefGoogle Scholar
  23. 23.
    Turnage WS, Lunn JL. Postpneumonectomy pulmonary edema. A retrospective analysis of associated variables. Chest. 1993;103:1646–50.CrossRefGoogle Scholar
  24. 24.
    Waller DA, Gebitekin C, Saundres NR, Walker DR. Noncardiogenic pulmonary edema complicating lung resection. Ann Thorac Surg. 1993;55:140–3.CrossRefGoogle Scholar
  25. 25.
    Keegan MT, Harrison BA, De Ruyter ML, Deschamps C. Post-pneumonectomy pulmonary edema are we making progress? Anesthesiology. 2004;101:A431.Google Scholar
  26. 26.
    Licker M, De Perrot M, Spiliopoulos A, et al. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97:1558–65.CrossRefGoogle Scholar
  27. 27.
    Padley SPG, Jordan SJ, Goldstraw P, et al. Asymmetric ARDS following pulmonary resection. Radiology. 2002;223:468–73.CrossRefGoogle Scholar
  28. 28.
    Waller DA, Keavey P, Woodfine L, Dark JH. Pulmonary endothelial permeability changes after major resection. Ann Thorac Surg. 1996;61:1435–40.CrossRefGoogle Scholar
  29. 29.
    Williams EA, Quinlan GJ, Goldstraw P, et al. Postoperative lung injury and oxidative damage in patients undergoing pulmonary resection. Eur Respir J. 1998;11:1028–34.CrossRefGoogle Scholar
  30. 30.
    Tayama K, Takamori S, Mitsuoka M, et al. Natriuretic peptides after pulmonary resection. Ann Thorac Surg. 2002;73:1582–6.CrossRefGoogle Scholar
  31. 31.
    Misthos P, Katsaragikis A, Milingos N, et al. Postresectional pulmonary oxidative stress in lung cancer patients. The role of one-lung ventilation. Eur J Cardiothorac Surg. 2005;27:379–83.CrossRefGoogle Scholar
  32. 32.
    Stewart DJ, Martin-Uncar AE, Edwards JG, et al. Extra-pleural pneumonectomy for malignant mesothelioma: the risks of induction chemotherapy, right-sided procedures and prolonged operations. Eur J Cardiothorac Surg. 2005;27:373–8.CrossRefGoogle Scholar
  33. 33.
    Boker A, Haberman C, Girling L, et al. Variable ventilation improves perioperative lung function in patients undergoing abdominal aortic aneurysmectomy. Anesthesiology. 2004;100:608–16.CrossRefGoogle Scholar
  34. 34.
    Mols G, Priebe H-J, Guttmann. Alveolar recruitment in acute lung injury. Br J Anaesth 2006, 96: 156–166CrossRefGoogle Scholar
  35. 35.
    Dreyfuss D, Soler P, Basset G, et al. High inflation pressure pulmonary edema. Am Rev Respir Dis. 1988;137:1159–64.CrossRefGoogle Scholar
  36. 36.
    Slinger P, Hickey DR. The interaction between applied PEEP and auto-PEEP during one-lung ventilation. J Cardiothorac Vasc Anesth. 1998;12:133–6.CrossRefGoogle Scholar
  37. 37.
    Capan LM, Turndorf H, Patel C, et al. Optimization of arterial oxygenation during one-lung anesthesia. Anesth Analg. 1980;59:847–51.PubMedGoogle Scholar
  38. 38.
    Slinger P, Kruger M, McRae K, Winton T. Relation of the static compliance curve and positive end-expiratory pressure to oxygenation during one-lung. Anesthesiology. 2001;95:1096–102.CrossRefGoogle Scholar
  39. 39.
    Fujiwara M, Abe K, Mashimo T. The effect of positive end-expiratory pressure and continuous positive airway pressure on the oxygenation and shunt fraction during one-lung ventilation with propofol anesthesia. J Clin Anesth. 2001;13:473–7.CrossRefGoogle Scholar
  40. 40.
    Tsuchida S, Engleberts D, Peltekova V, et al. Atelectasis causes alveolar injury in nonatelectatic lung regions. AJRCCM. 2006;174:279–89.Google Scholar
  41. 41.
    Leo F, Solli P, Spaggiari L, et al. Respiratory function changes after chemotherapy: an additional risk for post-operative respiratory complications? Ann Thorac Surg. 2004;77:260–5.CrossRefGoogle Scholar
  42. 42.
    Van der Werff YD, van der Houwen HK, Heilmans PJM, et al. Postpneumonectomy pulmonary edema. A retrospective analysis of incidence and possible risk factors. Chest. 1997;111:1278–84.CrossRefGoogle Scholar
  43. 43.
    Fernandez-Perez E, Keegan M, Brown DR. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105:14–8.CrossRefGoogle Scholar
  44. 44.
    Kuzkov V, Subarov E, Kirov M. Extravascular lung water after pneumonectomy and one-lung ventilation in sheep. Crit Care Med. 2007;35:1550–9.CrossRefGoogle Scholar
  45. 45.
    Alvarez JM, Panda RK, Newman MAJ, et al. Postpneumonectomy pulmonary edema. J Cardiothorac Vasc Anesth. 2003;17:388–95.CrossRefGoogle Scholar
  46. 46.
    Zupancich E. Mechanical ventilation affects inflammatory mediators in patients undergoing cardiopulmonary bypass for cardiac surgery: a randomized controlled trial. J Thorac Cardiovasc Surg. 2005;130:378–83.CrossRefGoogle Scholar
  47. 47.
    Ashes C, Slinger P. Volume management and resuscitation in thoracic surgery. Curr Anesthesiol Rep. 2014;4:386–96.CrossRefGoogle Scholar
  48. 48.
    Collins SR, Blank RS, Deatherage LS, et al. The endothelial glycocalyx: emerging concepts in pulmonary edema and acute lung injury. Anesth Analg. 2013;117:664–74.CrossRefGoogle Scholar
  49. 49.
    Englebert J, Macias A, Amador-Munoz D, et al. Isoflurane ameliorates acute lung injury by preserving epithelial tight junction integrity. Anesthesiology. 2015;123:377–88.CrossRefGoogle Scholar
  50. 50.
    Bux J, Sachs UJH. The pathogenesis of transfusion related lung injury (TRALI). Br J Haem. 2007;136:788–99.CrossRefGoogle Scholar
  51. 51.
    Popovsky MA, Moore SB. Diagnostic and pathogenic considerations in transfusion-related acute lung injury. Transfusion. 1985;25:573–7.CrossRefGoogle Scholar
  52. 52.
    Muller MC, van Stein D, Binnekade JM, et al. Low-risk transfusion-related acute lung injury donor strategies and the impact on the onset of transfusion-related lung injury: a meta-analysis. Transfusion. 2015;55:164–075.CrossRefGoogle Scholar
  53. 53.
    Dreyfuss D, Ricard J, Gaudry S. Did studies on HFOV fail to improve ARDS survival because they did not decrease VILI? On the potential validity of a physiological concept enounced several decades ago? Intensive Care Med. 2015;41:2210–2.CrossRefGoogle Scholar
  54. 54.
    Guldner A, Braune A, Ball L, et al. Comparative effects of volutrauma and atelectrauma on lung inflammation in experimental acute respiratory distress syndrome. Crit Care Med. 2016;44:e854–65.CrossRefGoogle Scholar
  55. 55.
    Chu E, Whitehead T, Slutsky A. Effects of cyclic opening and closing at low- and high-volume ventilation on bronchoalveolar lavage cytokines. Crit Care Med. 2004;32:168–74.CrossRefGoogle Scholar
  56. 56.
    Schilling T, Kozian A, Kretzschmar M, et al. Effects of desflurane or propofol on pulmonary and systemic immune response s to one-lung ventilation. Br J Anaesth. 2007;99:368–75.CrossRefGoogle Scholar
  57. 57.
    Balyasnikova I, Vistinine D, Gunnerson H, et al. Propofol attenuates lung endothelial injury induced by ischemia-reperfusion and oxidative stress. Anesth Analg. 2005;100:929–36.CrossRefGoogle Scholar
  58. 58.
    Bernard GR. Acute respiratory distress syndrome. Am J Respir Crit Care Med. 2005;171:1125–8.CrossRefGoogle Scholar
  59. 59.
    Matthay M. ß-Adrenergic agonist therapy as a potential treatment for acute lung injury. Am J Respir Crit Care Med. 2006;173:254–5.CrossRefGoogle Scholar
  60. 60.
    Perkins GD, McAuley DF, Thickett DR, et al. The ß-agonist lung injury trial. Am J Respir Crit Care Med. 2006;173:281–7.CrossRefGoogle Scholar
  61. 61.
    Sartori C, Allemann Y, Duplain H, et al. Salmeterol for the prevention of high altitude pulmonary edema. New Engl J Med. 2002;346:1631–6.CrossRefGoogle Scholar
  62. 62.
    Schilling T, Kozian A, Kretzschmar M, et al. Effects of propofol and desflurane anaesthesia on the alveolar inflammatory response to one-lung ventilation. Br J Anaesth. 2007;99:368–75.CrossRefGoogle Scholar
  63. 63.
    De Conno E, Steurer MP, Wittlinger M, et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology. 2009;110:1316–26.CrossRefGoogle Scholar
  64. 64.
    Oshumi A, Marseu K, Slinger P, et al. Sevoflurane attenuates ischemia-reperfusion injury in a rat lung transplantation model. Ann Thorac Surg. 2017;103:1578–158.CrossRefGoogle Scholar
  65. 65.
    Blank R, Colquhoun D, Durieux M, et al. Management of one lung ventilation, impact of tidal volume on complications after thoracic surgery. Anesthesiology. 2016;124:1286–95.CrossRefGoogle Scholar
  66. 66.
    Beck-Schimmer B, Bonvini JM, Braun J, et al. Which anesthesia regimen is best to reduce morbidity and mortality in lung surgery? A multicenter randomized controlled trial. Anesthesiology. 2016;125:313–21.CrossRefGoogle Scholar
  67. 67.
    Verhage R, Boone J, Rijkers G, et al. Reduced local immune response with continuous positive airway pressure during one-lung ventilation for oesophagectomy. Br J Anaesth. 2014;112:920–8.CrossRefGoogle Scholar
  68. 68.
    Gonzalez-Rivas D, Bonome C, Fieira E, et al. Non-intubated video-assisted thoracoscopic lung resections: the future of thoracic surgery? Eur J Cardiothorac Surg. 2016;49:721–31.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of AnesthesiaToronto General HospitalTorontoCanada

Personalised recommendations