Advertisement

Spatial Batch-Queries Processing Using xBR\(^+\)-trees in Solid-State Drives

  • George Roumelis
  • Michael VassilakopoulosEmail author
  • Antonio Corral
  • Athanasios Fevgas
  • Yannis Manolopoulos
Conference paper
  • 579 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11163)

Abstract

Efficient query processing in spatial databases is of vital importance for numerous modern applications. In most cases, such processing is accomplished by taking advantage of spatial indexes. The xBR\(^+\)-tree is an index for point data which has been shown to outperform indexes belonging to the R-tree family. On the other hand, Solid-State Drives (SSDs) are secondary storage devices that exhibit higher (especially read) performance than Hard Disk Drives and nowadays are being used in database systems. Regarding query processing, the higher performance of SSDs is maximized when large sequences of queries (batch queries) are executed by exploiting the massive I/O advantages of SSDs. In this paper, we present algorithms for processing common spatial (point-location, window and distance-range) batch queries using xBR\(^+\)-trees in SSDs. Moreover, utilizing small and large datasets, we experimentally study the performance of these new algorithms against processing of batch queries by repeatedly applying existing algorithms for these queries. Our experiments show that, even when the existing algorithms take advantage of LRU buffering that minimizes disk accesses, the new algorithms prevail performance-wise.

Keywords

Spatial indexes xBR\(^+\)-trees Query processing Solid-State Drives 

Notes

Acknowledgments

Work of Antonio Corral, Michael Vassilakopoulos and Yannis Manolopoulos funded by the MINECO research project [TIN2017-83964-R].

References

  1. 1.
    Carniel, A.C., Ciferri, R.R., de Aguiar Ciferri, C.D.: A generic and efficient framework for spatial indexing on flash-based solid state drives. In: Kirikova, M., Nørvåg, K., Papadopoulos, G.A. (eds.) ADBIS 2017. LNCS, vol. 10509, pp. 229–243. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66917-5_16CrossRefGoogle Scholar
  2. 2.
    Cho, S., Chang, S., Jo, I.: The solid-state drive technology, today and tomorrow. In: ICDE Conference, pp. 1520–1522 (2015)Google Scholar
  3. 3.
    Cornwell, M.: Anatomy of a solid-state drive. Commun. ACM 55(12), 59–63 (2012)CrossRefGoogle Scholar
  4. 4.
    Fevgas, A., Bozanis, P.: Grid-file: towards to a flash efficient multi-dimensional index. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp. 285–294. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22852-5_24CrossRefGoogle Scholar
  5. 5.
    Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv. 30(2), 170–231 (1998)CrossRefGoogle Scholar
  6. 6.
    Hady, F.T., Foong, A.P., Veal, B., Williams, D.: Platform storage performance with 3d XPoint technology. Proc. IEEE 105(9), 1822–1833 (2017)CrossRefGoogle Scholar
  7. 7.
    Jin, P., Xie, X., Wang, N., Yue, L.: Optimizing R-tree for flash memory. Expert Syst. Appl. 42(10), 4676–4686 (2015)CrossRefGoogle Scholar
  8. 8.
    Li, G., Zhao, P., Yuan, L., Gao, S.: Efficient implementation of a multi-dimensional index structure over flash memory storage systems. J. Supercomput. 64(3), 1055–1074 (2013)CrossRefGoogle Scholar
  9. 9.
    Lin, S., Zeinalipour-Yazti, D., Kalogeraki, V., Gunopulos, D., Najjar, W.A.: Efficient indexing data structures for flash-based sensor devices. TOS 2(4), 468–503 (2006)CrossRefGoogle Scholar
  10. 10.
    Lv, Y., Li, J., Cui, B., Chen, X.: Log-compact R-tree: an efficient spatial index for SSD. In: Xu, J., Yu, G., Zhou, S., Unland, R. (eds.) DASFAA 2011. LNCS, vol. 6637, pp. 202–213. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20244-5_20CrossRefGoogle Scholar
  11. 11.
    Pawlik, M., Macyna, W.: Implementation of the aggregated R-tree over flash memory. In: Yu, H., Yu, G., Hsu, W., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012. LNCS, vol. 7240, pp. 65–72. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29023-7_7CrossRefGoogle Scholar
  12. 12.
    Roh, H., Kim, S., Lee, D., Park, S.: As B-tree: a study of an efficient B+-tree for SSDs. J. Inf. Sci. Eng. 30(1), 85–106 (2014)Google Scholar
  13. 13.
    Roh, H., Park, S., Kim, S., Shin, M., Lee, S.: B\(^{+}\)-tree index optimization by exploiting internal parallelism of flash-based solid state drives. PVLDB 5(4), 286–297 (2011)Google Scholar
  14. 14.
    Roh, H., Park, S., Shin, M., Lee, S.: Mpsearch: multi-path search for tree-based indexes to exploit internal parallelism of flash SSDs. IEEE Data Eng. Bull. 37(2), 3–11 (2014)Google Scholar
  15. 15.
    Roumelis, G., Vassilakopoulos, M., Corral, A.: Performance comparison of xBR-trees and R*-trees for single dataset spatial queries. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 228–242. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23737-9_17CrossRefGoogle Scholar
  16. 16.
    Roumelis, G., Vassilakopoulos, M., Corral, A., Manolopoulos, Y.: Bulk-loading xBR\(^+\)-trees. In: Bellatreche, L., Pastor, Ó., Almendros Jiménez, J.M., Aït-Ameur, Y. (eds.) MEDI 2016. LNCS, vol. 9893, pp. 57–71. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45547-1_5CrossRefGoogle Scholar
  17. 17.
    Roumelis, G., Vassilakopoulos, M., Corral, A., Manolopoulos, Y.: Bulk insertions into xBR\(^{+}\)-trees. In: Ouhammou, Y., Ivanovic, M., Abelló, A., Bellatreche, L. (eds.) MEDI 2017. LNCS, vol. 10563, pp. 185–199. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66854-3_14CrossRefGoogle Scholar
  18. 18.
    Roumelis, G., Vassilakopoulos, M., Corral, A., Manolopoulos, Y.: Efficient query processing on large spatial databases: a performance study. J. Syst. Softw. 132, 165–185 (2017)CrossRefGoogle Scholar
  19. 19.
    Roumelis, G., Vassilakopoulos, M., Loukopoulos, T., Corral, A., Manolopoulos, Y.: The xBR\(^+\)-tree: an efficient access method for points. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9261, pp. 43–58. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22849-5_4CrossRefGoogle Scholar
  20. 20.
    Samet, H.: The quadtree and related hierarchical data structures. ACM Comput. Surv. 16(2), 187–260 (1984)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading (1990)Google Scholar
  22. 22.
    Sarwat, M., Mokbel, M.F., Zhou, X., Nath, S.: FAST: a generic framework for flash-aware spatial trees. In: Pfoser, D. (ed.) SSTD 2011. LNCS, vol. 6849, pp. 149–167. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22922-0_10CrossRefGoogle Scholar
  23. 23.
    Vassilakopoulos, M., Manolopoulos, Y.: External balanced regular (x-BR) trees: new structures for very large spatial databases. In: Advances in Informatics: Selected papers of the 7th Panhellenic Conference on Informatics, pp. 324–333. World Scientific (2000)Google Scholar
  24. 24.
    Wu, C., Chang, L., Kuo, T.: An efficient R-tree implementation over flash-memory storage systems. In: ACM-GIS Conference, pp. 17–24 (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • George Roumelis
    • 1
  • Michael Vassilakopoulos
    • 1
    Email author
  • Antonio Corral
    • 2
  • Athanasios Fevgas
    • 1
  • Yannis Manolopoulos
    • 3
  1. 1.Data Structuring & Engineering Lab., Department of Electrical and Computer EngineeringUniversity of ThessalyVolosGreece
  2. 2.Department of InformaticsUniversity of AlmeriaAlmeriaSpain
  3. 3.Faculty of Pure and Applied SciencesOpen University of CyprusNicosiaCyprus

Personalised recommendations