Advertisement

Multi-perspective Comparison of Business Process Variants Based on Event Logs

  • Hoang NguyenEmail author
  • Marlon Dumas
  • Marcello La Rosa
  • Arthur H. M. ter Hofstede
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11157)

Abstract

A process variant represents a collection of cases with certain shared characteristics, e.g. cases that exhibit certain levels of performance. The comparison of business process variants based on event logs is a recurrent operation in the field of process mining. Existing approaches focus on comparing variants based on directly-follows relations such as “a task directly follows another one” or a “resource directly hands-off to another resource”. This paper presents a more general approach to log-based process variant comparison based on so-called perspective graphs. A perspective graph is a graph-based abstraction of an event log where a node represents any entity referred to in the log (e.g. task, resource, location) and an arc represents a relation between these entities within or across cases (e.g. directly-follows, co-occurs, hands-off to, works-together with). Statistically significant differences between two perspective graphs are captured in a so-called differential perspective graph, which allows us to compare two logs from any perspective. The paper illustrates the approach and compares it to an existing baseline using real-life event logs.

Keywords

Process mining Variant analysis Comparison Multi-perspective 

Notes

Acknowledgements

This research is partly funded by the Australian Research Council (DP150103356) and the Estonian Research Council.

References

  1. 1.
    Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M., Suriadi, S.: Mining business process deviance: a quest for accuracy. In: Meersman, R., et al. (eds.) OTM 2014. LNCS, vol. 8841, pp. 436–445. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45563-0_25CrossRefGoogle Scholar
  2. 2.
    van Beest, N.R.T.P., Dumas, M., García-Bañuelos, L., La Rosa, M.: Log delta analysis: interpretable differencing of business process event logs. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 386–405. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23063-4_26CrossRefGoogle Scholar
  3. 3.
    Wynn, M., et al.: ProcessProfiler3D: a visualisation framework for log-based process performance comparison. DSS 100, 93–108 (2017)Google Scholar
  4. 4.
    Bolt, A., de Leoni, M., van der Aalst, W.M.P.: Process variant comparison: using event logs to detect differences in behavior and business rules. Inf. Syst. 74, 53–66 (2018)CrossRefGoogle Scholar
  5. 5.
    Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., Wynn, M.T.: Profiling event logs to configure risk indicators for process delays. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 465–481. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38709-8_30CrossRefGoogle Scholar
  6. 6.
    Gulden, J.: Visually comparing process dynamics with rhythm-eye views. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 474–485. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58457-7_35CrossRefGoogle Scholar
  7. 7.
    Pika, A., Wynn, M.T., Fidge, C.J., ter Hofstede, A.H.M., Leyer, M., van der Aalst, W.M.P.: An extensible framework for analysing resource behaviour using event logs. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 564–579. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07881-6_38CrossRefGoogle Scholar
  8. 8.
    Ballambettu, N.P., Suresh, M.A., Bose, R.P.J.C.: Analyzing process variants to understand differences in key performance indices. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 298–313. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59536-8_19CrossRefGoogle Scholar
  9. 9.
    Bolt, A., van der Aalst, W.M.P.: Multidimensional process mining using process cubes. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 102–116. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19237-6_7CrossRefGoogle Scholar
  10. 10.
    IEEE standard for eXtensible Event Stream (XES) for achieving interoperability in event Logs and event streams. IEEE Std 1849–2016, pp. 1–50 (2016)Google Scholar
  11. 11.
    McGraw, K.O., Wong, S.P.: A common language effect size statistic. Psychol. Bull. 111(2), 361–365 (1992)CrossRefGoogle Scholar
  12. 12.
    Nguyen, H., Dumas, M., La Rosa, M., ter Hofstede, A.H.M.: Multi-perspective comparison of business process variants based on event Logs (extended paper). QUT ePrints Technical report, Queensland University of Technology (2018). http://eprints.qut.edu.au/117962

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Hoang Nguyen
    • 1
    Email author
  • Marlon Dumas
    • 2
  • Marcello La Rosa
    • 3
  • Arthur H. M. ter Hofstede
    • 1
  1. 1.Queensland University of TechnologyBrisbaneAustralia
  2. 2.University of TartuTartuEstonia
  3. 3.University of MelbourneMelbourneAustralia

Personalised recommendations