Advertisement

Towards an Ontology of Software Defects, Errors and Failures

  • Bruno Borlini Duarte
  • Ricardo A. Falbo
  • Giancarlo Guizzardi
  • Renata S. S. Guizzardi
  • Vítor E. S. SouzaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11157)

Abstract

The rational management of software defects is a fundamental requirement for a mature software industry. Standards, guides and capability models directly emphasize how important it is for an organization to know and to have a well-established history of failures, errors and defects as they occur in software activities. The problem is that each of these reference models employs its own vocabulary to deal with these phenomena, which can lead to a deficiency in the understanding of these notions by software engineers, potential interoperability problems between supporting tools, and, consequently, to a poorer adoption of these standards and tools in practice. We address this problem of the lack of a consensual conceptualization in this area by proposing a reference conceptual model (domain ontology) of Software Defects, Errors and Failures, which takes into account an ecosystem of software artifacts. The ontology is grounded on the Unified Foundational Ontology (UFO) and is based on well-known standards, guides and capability models. We demonstrate how this approach can suitably promote conceptual clarification and terminological harmonization in this area.

Keywords

Ontologies in software engineering UFO Software anomaly 

Notes

Acknowledgments

NEMO (http://nemo.inf.ufes.br) is currently supported by Brazilian research funding agencies CNPq (process 407235/2017-5), CAPES (process 23038. 028816/2016-41), and FAPES (process 69382549/2015).

References

  1. 1.
    ISO: ISO/IEC/IEEE International Standard - Systems and software engineering - Vocabulary. Technical report, International Organization for Standardization, August 2017Google Scholar
  2. 2.
    Guimaraes, E., Garcia, A., Figueiredo, E., Cai, Y.: Prioritizing software anomalies with software metrics and architecture blueprints. In: 2013 5th International Workshop on Modeling in Software Engineering (MiSE), pp. 82–88. IEEE (2013)Google Scholar
  3. 3.
    IEEE: IEEE 1044: Standard Classification for Software Anomalies. Technical report, Technical report, Institute of Electrical and Electronics Engineers, Inc. (2009)Google Scholar
  4. 4.
    IEEE: IEEE 1028: Standard for Software Reviews and Autis. Technical report, Technical report, Institute of Electrical and Electronics Engineers, Inc. (2008)Google Scholar
  5. 5.
    Bourque, P., Fairley, R.E., et al.: Guide to the software engineering body of knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press (2014)Google Scholar
  6. 6.
    SEI/CMU: CMMI® for Development, Version 1.3, Improving processes for developing better products and services. no. CMU/SEI-2010-TR-033. Software Engineering Institute (2010)Google Scholar
  7. 7.
    IEEE: IEEE 1012: Standard for System, Software, and Hardware Verification and Validation. Technical report, Technical report, Institute of Electrical and Electronics Engineers, Inc. (2016)Google Scholar
  8. 8.
    Falbo, R.A.: SABiO: Systematic Approach for Building Ontologies. In: Guizzardi, G., et al. (eds.) Proceedings of the Proceedings of the 1st Joint Workshop ONTO.COM / ODISE on Ontologies in Conceptual Modeling and Information Systems Engineering, Rio de Janeiro, RJ, Brasil, CEUR, September 2014Google Scholar
  9. 9.
    Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Ph.D. thesis, University of Twente, The Netherlands (2005)Google Scholar
  10. 10.
    Guizzardi, G., Wagner, G., de Almeida Falbo, R., Guizzardi, R.S.S., Almeida, J.P.A.: Towards ontological foundations for the conceptual modeling of events. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 327–341. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41924-9_27CrossRefGoogle Scholar
  11. 11.
    Falbo, R.D.A., Bertollo, G.: A software process ontology as a common vocabulary about software processes. Int. J. Bus. Process Integr. Manage. 4(4), 239–250 (2009)CrossRefGoogle Scholar
  12. 12.
    Guizzardi, G., de Almeida Falbo, R., Guizzardi, R.S.: Grounding software domain ontologies in the unified foundational ontology (UFO): the case of the ode software process ontology. In: Proceedings of the 11th Iberoamerican Conference on Software Engineering (CIbSE), pp. 127–140 (2008)Google Scholar
  13. 13.
    Guizzardi, R.S.S., Li, F.L., Borgida, A., Guizzardi, G., Horkoff, J., Mylopoulos, J.: An ontological interpretation of non-functional requirements. In: Garbacz, P., Kutz, O. (eds.) Proceedings of the 8th International Conference on Formal Ontology in Information Systems, vol. 267, Rio de Janeiro, RJ, Brasil, pp. 344–357. IOS Press, September 2014Google Scholar
  14. 14.
    Verdonck, M., Gailly, F.: Insights on the use and application of ontology and conceptual modeling languages in ontology-driven conceptual modeling. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 83–97. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46397-1_7CrossRefGoogle Scholar
  15. 15.
    Borges Ruy, F., de Almeida Falbo, R., Perini Barcellos, M., Dornelas Costa, S., Guizzardi, G.: SEON: a software engineering ontology network. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 527–542. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49004-5_34CrossRefGoogle Scholar
  16. 16.
    Benevides, A.B., Bourguet, J., Guizzardi, G., Peñaloza, R.: Representing the UFO-B foundational ontology of events in SROIQ. In: Proceedings of the Joint Ontology Workshops 2017 Episode 3: The Tyrolean Autumn of Ontology, Bozen-Bolzano, Italy, 21–23 September 2017Google Scholar
  17. 17.
    Guizzardi, G., Guarino, N., Almeida, J.P.A.: Ontological considerations about the representation of events and endurants in business models. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 20–36. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45348-4_2CrossRefGoogle Scholar
  18. 18.
    de Oliveira Bringuente, A.C., de Almeida Falbo, R., Guizzardi, G.: Using a foundational ontology for reengineering a software process ontology. J. Inf. Data Manage. 2(3), 511 (2011)Google Scholar
  19. 19.
    Duarte, B.B., Souza, V.E.S., Leal, A.L.D.C., Guizzardi, G., Falbo, R.D.A., Guizzardi, R.S.S.: Ontological foundations for software requirements with a focus on requirements at runtime. Appl. Ontol., 1–33 (2018)Google Scholar
  20. 20.
    Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages, and (meta) models. Front. Artif. Intell. Appl. 155, 18 (2007)Google Scholar
  21. 21.
    de Souza, É.F., Falbo, R.D.A., Vijaykumar, N.L.: ROoST: reference ontology on software testing. Appl. Ontol., 1–32 (2017)Google Scholar
  22. 22.
    Grüninger, M., Fox, M.: Methodology for the design and evaluation of ontologies. In: Workshop on Basic Ontological Issues in Knowledge Sharing, IJCAI 1995 (1995)Google Scholar
  23. 23.
    Del Frate, L.: Preliminaries to a formal ontology of failure of engineering artifacts. In: FOIS, pp. 117–130 (2012)Google Scholar
  24. 24.
    Guizzardi, R.S.S., Franch, X., Guizzardi, G., Wieringa, R.: Ontological distinctions between means-end and contribution links in the i* framework. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 463–470. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41924-9_39CrossRefGoogle Scholar
  25. 25.
    Hogganvik, I., Stølen, K.: A graphical approach to risk identification, motivated by empirical investigations. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MODELS 2006. LNCS, vol. 4199, pp. 574–588. Springer, Heidelberg (2006).  https://doi.org/10.1007/11880240_40CrossRefGoogle Scholar
  26. 26.
    Prince, T., et al.: The common ontology of value and risk. In: Submitted to the 37th International Conference on Conceptual Modeling (ER 2018), Xi’an (2018)Google Scholar
  27. 27.
    PMI: A guide to the project management body of knowledge (PMBOK guide). Technical report, Project Management Institute (2013)Google Scholar
  28. 28.
    Chillarege, R.: Orthogonal defect classification. In: Handbook of Software Reliability Engineering, pp. 359–399 (1996)Google Scholar
  29. 29.
    Wang, X., Mylopoulos, J., Guizzardi, G., Guarino, N.: How software changes the world: the role of assumptions. In: Tenth IEEE International Conference on Research Challenges in Information Science, RCIS 2016, Grenoble, France, pp. 1–12, 1–3 June 2016Google Scholar
  30. 30.
    Fricker, S.A., Schneider, K. (eds.): REFSQ 2015. LNCS, vol. 9013. Springer, Cham (2015)Google Scholar
  31. 31.
    Leveson, N.G., Turner, C.S.: An investigation of the Therac-25 accidents. Computer 26(7), 18–41 (1993)CrossRefGoogle Scholar
  32. 32.
    Williams, C.: Intel’s Pentium chip crisis: an ethical analysis. IEEE Trans. Prof. Commun. 40(1), 13–19 (1997)CrossRefGoogle Scholar
  33. 33.
    Kitamura, Y., Mizoguchi, R.: An ontological analysis of fault process and category of faults. In: Proceedings of Tenth International Workshop on Principles of Diagnosis (DX-99), pp. 118–128 (1999)Google Scholar
  34. 34.
    Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secure Computing 1(1), 11–33 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Bruno Borlini Duarte
    • 1
  • Ricardo A. Falbo
    • 1
  • Giancarlo Guizzardi
    • 1
    • 2
  • Renata S. S. Guizzardi
    • 1
  • Vítor E. S. Souza
    • 1
    Email author
  1. 1.Ontology and Conceptual Modeling Research Group (NEMO)Federal University of Espírito SantoVitóriaBrazil
  2. 2.Conceptual and Cognitive Modeling Research Group (CORE)Free University of Bolzano-BozenBolzanoItaly

Personalised recommendations