Advertisement

Interactive Data-Driven Process Model Construction

  • P. M. DixitEmail author
  • H. M. W. Verbeek
  • J. C. A. M. Buijs
  • W. M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11157)

Abstract

Process discovery algorithms address the problem of learning process models from event logs. Typically, in such settings a user’s activity is limited to configuring the parameters of the discovery algorithm, and hence the user expertise/domain knowledge can not be incorporated during traditional process discovery. In a setting where the event logs are noisy, incomplete and/or contain uninteresting activities, the process models discovered by discovery algorithms are often inaccurate and/or incomprehensible. Furthermore, many of these automated techniques can produce unsound models and/or cannot discover duplicate activities, silent activities etc. To overcome such shortcomings, we introduce a new concept to interactively discover a process model, by combining a user’s domain knowledge with the information from the event log. The discovered models are always sound and can have duplicate activities, silent activities etc. An objective evaluation and a case study shows that the proposed approach can outperform traditional discovery techniques.

Keywords

HCI Process discovery Process mining 

References

  1. 1.
    van der Aalst, W.M.P.: On the representational bias in process mining. In: 2011 20th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), pp. 2–7, June 2011Google Scholar
  2. 2.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  3. 3.
    Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from event-based data using little thumb. Integr. Comput. Aided Eng. 10(2), 151–162 (2003)CrossRefGoogle Scholar
  4. 4.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68746-7_24CrossRefGoogle Scholar
  5. 5.
    Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets from finite transition systems. IEEE Trans. Comput. 47(8), 859–882 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 375–383. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75183-0_27CrossRefGoogle Scholar
  7. 7.
    Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm for discovering process trees. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)Google Scholar
  8. 8.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06257-0_6CrossRefGoogle Scholar
  9. 9.
    Fahland, D., van der Aalst, W.M.P.: Repairing process models to reflect reality. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 229–245. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32885-5_19CrossRefGoogle Scholar
  10. 10.
    van der Aalst, W.M.P., et al.: Soundness of workflow nets: classification, decidability, and analysis. Form. Asp. Comput. 23(3), 333–363 (2011)Google Scholar
  11. 11.
    Carmona, J., Cortadella, J.: Process discovery algorithms using numerical abstract domains. IEEE Trans. Knowl. Data Eng. 26(12), 3064–3076 (2014)CrossRefGoogle Scholar
  12. 12.
    Conforti, R., Dumas, M., García-Bañuelos, L., La Rosa, M.: Beyond tasks and gateways: discovering BPMN models with subprocesses, boundary events and activity markers. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 101–117. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10172-9_7CrossRefGoogle Scholar
  13. 13.
    Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00899-3_16CrossRefGoogle Scholar
  14. 14.
    Bellodi, E., Riguzzi, F., Lamma, E.: Probabilistic declarative process mining. In: Bi, Y., Williams, M.-A. (eds.) KSEM 2010. LNCS (LNAI), vol. 6291, pp. 292–303. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15280-1_28CrossRefGoogle Scholar
  15. 15.
    Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. MIS Q. 40(4), 1009–1034 (2016)CrossRefGoogle Scholar
  16. 16.
    Desel, J., Esparza, J.: Free Choice Petri Nets, vol. 40. Cambridge University Press, New York (2005)zbMATHGoogle Scholar
  17. 17.
    Greco, G., Guzzo, A., Lupa, F., Luigi, P.: Process discovery under precedence constraints. ACM Trans. Knowl. Discov. Data 9(4), 32:1–32:39 (2015)CrossRefGoogle Scholar
  18. 18.
    Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process models. In: 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 192–199. IEEE (2011)Google Scholar
  19. 19.
    Dixit, P.M., Buijs, J.C.A.M., van der Aalst, W.M.P., Hompes, B.F.A., Buurman, J.: Using domain knowledge to enhance process mining results. In: Ceravolo, P., Rinderle-Ma, S. (eds.) SIMPDA 2015. LNBIP, vol. 244, pp. 76–104. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-53435-0_4CrossRefGoogle Scholar
  20. 20.
    Rembert, A.J., Omokpo, A., Mazzoleni, P., Goodwin, R.T.: Process discovery using prior knowledge. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 328–342. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45005-1_23CrossRefGoogle Scholar
  21. 21.
    Mathern, B., Mille, A., Bellet, T.: An Interactive Method to Discover a Petri Net Model of an Activity. working paper or preprint, April 2010Google Scholar
  22. 22.
    La Rosa, M., et al.: Apromore: an advanced process model repository. Expert. Syst. Appl. 38(6), 7029–7040 (2011)Google Scholar
  23. 23.
    Armas-Cervantes, A., van Beest, N.R.T.P., La-Rosa, M., Dumas, M., García-Bañuelos, L.: Interactive and incremental business process model repair. In: Panetto, H. (ed.) On the Move to Meaningful Internet Systems. LNCS, vol. 10573, pp. 53–74. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69462-7_5CrossRefGoogle Scholar
  24. 24.
    van der Aalst, W.M.P.: The application of Petri nets to workflow management. J. Circuits Syst. Comput. 8(01), 21–66 (1998)CrossRefGoogle Scholar
  25. 25.
    Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards robust conformance checking. In: zur Muehlen, M., Su, J. (eds.) BPM 2010. LNBIP, vol. 66, pp. 122–133. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20511-8_11CrossRefGoogle Scholar
  26. 26.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and conformance checking. Softw. Syst. Model. 08, 1374–1619 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • P. M. Dixit
    • 1
    Email author
  • H. M. W. Verbeek
    • 1
  • J. C. A. M. Buijs
    • 1
  • W. M. P. van der Aalst
    • 2
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Rheinisch-Westfälische Technische Hochschule (RWTH)AachenGermany

Personalised recommendations