Advertisement

Detecting Introgression in Anopheles Mosquito Genomes Using a Reconciliation-Based Approach

  • Cedric ChauveEmail author
  • Jingxue Feng
  • Liangliang Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11183)

Abstract

Introgression is an important evolutionary mechanism in insects and animals evolution. Current methods for detecting introgression rely on the analysis of phylogenetic incongruence, using either statistical tests based on expected phylogenetic patterns in small phylogenies or probabilistic modeling in a phylogenetic network context. Introgression leaves a phylogenetic signal similar to horizontal gene transfer, and it has been suggested that its detection can also be approached through the gene tree/species tree reconciliation framework, which accounts jointly for other evolutionary mechanisms such as gene duplication and gene loss. However so far the use of a reconciliation-based approach to detect introgression has not been investigated in large datasets. In this work, we apply this principle to a large dataset of Anopheles mosquito genomes. Our reconciliation-based approach recovers the extensive introgression that occurs in the gambiae complex, although with some variations compared to previous reports. Our analysis also suggests a possible ancient introgression event involving the ancestor of An. christyi.

Notes

Acknowledgments

CC is supported by Natural Science and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN-2017-03986. Most computations were done on the Cedar system of ComputeCanada through a resource allocation to CC. We thank Luay Nakhleh for useful feedback on an early draft of this work.

References

  1. 1.
    Anselmetti, Y., Duchemin, W., Tannier, E.: Phylogenetic signal from rearrangements in 18 anopheles species by joint scaffolding extant and ancestral genomes. BMC Genomics 19(2), 96 (2018)CrossRefGoogle Scholar
  2. 2.
    Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Blischak, P.D., Chifman, J., Wolfe, A.D., Kubatko, L.S.: HyDe: a python package for genome-scale hybridization detection. Syst. Biol. (2018).  https://doi.org/10.1093/sysbio/syy023
  4. 4.
    Chan, Y.-B., Ranwez, V., Scornavacca, C.: Inferring incomplete lineage sorting, duplications, transfers and losses with reconciliations. J. Theor. Biol. 432, 1–13 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chauve, C., Rafiey, A., Davin, A.A., Scornavacca, C., et al.: Maxtic: fast ranking of a phylogenetic tree by maximum time consistency with lateral gene transfers (2017). biorxiv:  https://doi.org/10.1101/127548. Reviewed  https://doi.org/10.24072/pci.evolbiol.100037
  6. 6.
    Degnan, J.H.: Modeling hybridization under the network multispecies coalescent. Syst. Biol. (2018). Advance access.  https://doi.org/10.1093/sysbio/syy040
  7. 7.
    Durand, E.Y., Patterson, N., Reich, D., Slatkin, M.: Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28(8), 2239–2252 (2011)CrossRefGoogle Scholar
  8. 8.
    Elworth, R., Allen, C., Benedict, T., Dulworth, P., Nakhleh, L.: DGEN: a test statistic for detection of general introgression scenarios (2018).  https://doi.org/10.1101/348649
  9. 9.
    Fontaine, M.C., Pease, J.B., Steele, A.: Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347(6217), 1258524 (2015)CrossRefGoogle Scholar
  10. 10.
    Garros, C., Koekemoer, L., Coetzee, M., Coosemans, M., Manguin, S.: A single multiplex assay to identify major malaria vectors within the African Anopheles funestus and the Oriental An. minimus groups. Am. J. Trop. Med. Hyg. 70, 583–590 (2004)CrossRefGoogle Scholar
  11. 11.
    Holland, B.R., Benthin, S., Lockhart, P.J., Moulton, V., Huber, K.T.: Using supernetworks to distinguish hybridization from lineage-sorting. BMC Evol. Biol. 8(1), 202 (2008)CrossRefGoogle Scholar
  12. 12.
    Jacox, E., Chauve, C., Szöllősi, G.J., Ponty, Y., Scornavacca, C.: ecceTERA: comprehensive gene tree-species tree reconciliation using parsimony. Bioinformatics 32(13), 2056–2058 (2016)CrossRefGoogle Scholar
  13. 13.
    Lakner, C., Van Der Mark, P., Huelsenbeck, J.P., Larget, B., Ronquist, F.: Efficiency of Markov chain Monte Carlo tree proposals in bayesian phylogenetics. Syst. Biol. 57(1), 86–103 (2008)CrossRefGoogle Scholar
  14. 14.
    Liu, K.J., Dai, J., Truong, K., Song, Y., Kohn, M.H., Nakhleh, L.: An HMM-based comparative genomic framework for detecting introgression in eukaryotes. PLOS Comput. Biol. 10(6), 1–13 (2014)Google Scholar
  15. 15.
    Mallet, J., Besansky, N., Hahn, M.W.: How reticulated are species? BioEssays 38(2), 140–149 (2015)CrossRefGoogle Scholar
  16. 16.
    Martin, S.H., Jiggins, C.D.: Interpreting the genomic landscape of introgression. Curr. Opin. Genet. Dev. 47, 69–74 (2017)CrossRefGoogle Scholar
  17. 17.
    Nakhleh, L.: Computational approaches to species phylogeny inference and gene tree reconciliation. Trends Ecol. Evol. 28(12), 719–728 (2013)CrossRefGoogle Scholar
  18. 18.
    Pease, J.B., Hahn, M.W.: Detection and polarization of introgression in a five-taxon phylogeny. Syst. Biol. 64(4), 651–662 (2015)CrossRefGoogle Scholar
  19. 19.
    Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A.: Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61(3), 539–542 (2012)CrossRefGoogle Scholar
  20. 20.
    Rosenzweig, B.K., Pease, J.B., Besansky, N.J., Hahn, M.W.: Powerful methods for detecting introgressed regions from population genomic data. Mol. Ecol. 25(11), 2387–2397 (2016)CrossRefGoogle Scholar
  21. 21.
    Solìs-Lemus, C., Ané, C.: Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLOS Genet. 12(3), 1–21 (2016)Google Scholar
  22. 22.
    Sousa, F., Bertrand, Y.J.K., Doyle, J.J.: Using genomic location and coalescent simulation to investigate gene tree discordance in Medicago l. Syst. Biol. 66(6), 934–949 (2017)CrossRefGoogle Scholar
  23. 23.
    Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., Durand, D.: Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28(18), i409–i415 (2012)CrossRefGoogle Scholar
  24. 24.
    Szöllősi, G.J., Rosikiewicz, W., Boussau, B., Tannier, E., Daubin, V.: Efficient exploration of the space of reconciled gene trees. Syst. Biol. 62(6), 901–912 (2013)CrossRefGoogle Scholar
  25. 25.
    Szöllosi, G.J., Davín, A.A., Tannier, E., Daubin, V., Boussau, B.: Genome-scale phylogenetic analysis finds extensive gene transfer among fungi. Philos. Trans. Royal Soc. B Biol. Sci. 370(1678), 20140335 (2015)CrossRefGoogle Scholar
  26. 26.
    Wang, Y., Zhou, X., Yang, D., Rokas, A.: A genome-scale investigation of incongruence in culicidae mosquitoes. Genome Biol. Evol. 7(12), 3463–3471 (2015)CrossRefGoogle Scholar
  27. 27.
    Waterhouse, R.M., Tegenfeldt, F., Li, J.: OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Res. 41(D1), D358–D365 (2012)CrossRefGoogle Scholar
  28. 28.
    Wen, D., Nakhleh, L.: Coestimating reticulate phylogenies and gene trees from multilocus sequence data. Syst. Biol. 67(3), 439–457 (2018)CrossRefGoogle Scholar
  29. 29.
    Wen, D., Yu, Y., Hahn, M.W., Nakhleh, L.: Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis. Mol. Ecol. 25(11), 2361–2372 (2016)CrossRefGoogle Scholar
  30. 30.
    Wen, D., Yu, Y., Zhu, J., Nakhleh, L.: Inferring phylogenetic networks using PhyloNet. Syst. Biol. 67(4), 35–40 (2018)CrossRefGoogle Scholar
  31. 31.
    Yu, Y., Barnett, R.M., Nakhleh, L.: Parsimonious inference of hybridization in the presence of incomplete lineage sorting. Syst. Biol. 62(5), 738–751 (2013)CrossRefGoogle Scholar
  32. 32.
    Yu, Y., Nakhleh, L.: A maximum pseudo-likelihood approach for phylogenetic networks. BMC Genomics 16(10), S10 (2015)CrossRefGoogle Scholar
  33. 33.
    Zhang, C., Ogilvie, H.A., Drummond, A.J., Stadler, T.: Bayesian inference of species networks from multilocus sequence data. Mol. Biol. Evol. 35(2), 504–517 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsSimon Fraser UniversityBurnabyCanada
  2. 2.Department of Statistics and Actuarial SciencesSimon Fraser UniversityBurnabyCanada

Personalised recommendations