The Rooted SCJ Median with Single Gene Duplications

  • Aniket C. Mane
  • Manuel Lafond
  • Pedro Feijão
  • Cedric ChauveEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11183)


The median problem is a classical problem in genome rearrangements. It aims to compute a gene order that minimizes the sum of the genomic distances to \(k\ge 3\) given gene orders. This problem is intractable except in the related Single-Cut-or-Join and breakpoint rearrangement models. Here we consider the rooted median problem, where we assume one of the given genomes to be ancestral to the median, which is itself ancestral to the other genomes. We show that in the Single-Cut-or-Join model with single gene duplications, the rooted median problem is NP-hard. We also describe an Integer Linear Program for solving this problem, which we apply to simulated data, showing high accuracy of the reconstructed medians.



CC is supported by Natural Science and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN-2017-03986. CC and PF are supported by CIHR/Genome Canada Bioinformatics and Computational Biology grant B/CB 11106. Most computations were done on the Cedar system of Compute Canada through a resource allocation to CC.


  1. 1.
    Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: On the approximability of comparing genomes with duplicates. J. Graph Algorithms Appl. 13(1), 19–53 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness of short symmetric instances of MAX-3SAT. Technical report TR03-049, Electronic Colloquium on Computational Complexity (ECCC) (2003)Google Scholar
  3. 3.
    Blanchette, M., Bourque, G., Sankoff, D.: Breakpoint phylogenies. Genome Inform. 8, 25–34 (1997)Google Scholar
  4. 4.
    Blin, G., Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Comparing genomes with duplications: a computational complexity point of view. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(4), 523–534 (2007)CrossRefGoogle Scholar
  5. 5.
    Boyd, S.C., Haghighi, M.: Mixed and circular multichromosomal genomic median problem. SIAM J. Discret. Math. 27(1), 63–74 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D., Nadeau, J.H. (eds.) Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families, pp. 207–211. Springer, Dordrecht (2000). Scholar
  7. 7.
    Bryant, D.: A lower bound for the breakpoint phylogeny problem. J. Discret. Algorithms 2(2), 229–255 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Davin, A.A., Tricou, T., Tannier, E., de Vienne, D.M., Szollosi, G.J.: Zombi: a simulator of species, genes and genomes that accounts for extinct lineages. bioRxiv (2018).
  9. 9.
    Doerr, D., Balaban, M., Feijão, P., Chauve, C.: The gene family-free median of three. Algorithms Mol. Biol. 12(1), 14:1–14:14 (2017)CrossRefGoogle Scholar
  10. 10.
    Feijão, P., Mane, A.C., Chauve, C.: A tractable variant of the single cut or join distance with duplicated genes. In: Meidanis, J., Nakhleh, L. (eds.) RECOMB CG 2017. LNCS, vol. 10562, pp. 14–30. Springer, Cham (2017). Scholar
  11. 11.
    Feijão, P., Meidanis, J.: SCJ: a breakpoint-like distance that simplifies several rearrangement problems. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1318–1329 (2011)CrossRefGoogle Scholar
  12. 12.
    Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rearrangements. Computational Molecular Biology. MIT Press, Cambridge (2009)CrossRefGoogle Scholar
  13. 13.
    Kondrashov, F.A.: Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc. R. Soc. Lond. B Biol. Sci. 279(1749), 5048–5057 (2012)CrossRefGoogle Scholar
  14. 14.
    Kovác, J.: On the complexity of rearrangement problems under the breakpoint distance. J. Comput. Biol. 21(1), 1–15 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Levasseur, A., Pontarotti, P.: The role of duplications in the evolution of genomes highlights the need for evolutionary-based approaches in comparative genomics. Biol. Direct 6(1), 11 (2011)CrossRefGoogle Scholar
  16. 16.
    Luhmann, N., Lafond, M., Thèvenin, A., Ouangraoua, A., Wittler, R., Chauve, C.: The SCJ small parsimony problem for weighted gene adjacencies. IEEE/ACM Trans. Comput. Biol. Bioinform. (2017).
  17. 17.
    Ming, R., VanBuren, R., Wai, C.M., et al.: The pineapple genome and the evolution of CAM photosynthesis. Nat. Genet. 47(12), 1435–1442 (2015)CrossRefGoogle Scholar
  18. 18.
    Moret, B.M.E., Wyman, S.K., Bader, D.A., Warnow, T.J., Yan, M.: A new implementation and detailed study of breakpoint analysis. In: Pacific Symposium on Biocomputing, pp. 583–594 (2001)Google Scholar
  19. 19.
    Neafsey, D., Waterhouse, R., Abai, M., et al.: Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 347(6217), 1258522 (2015)CrossRefGoogle Scholar
  20. 20.
    Pe’er, I., Shamir, R.: The median problems for breakpoints are np-complete. Technical report TR98-071, Electronic Colloquium on Computational Complexity (ECCC) (1998)Google Scholar
  21. 21.
    Sankoff, D., Sundaram, G., Kececioglu, J.D.: Steiner points in the space of genome rearrangements. Int. J. Found. Comput. Sci. 7(1), 1–9 (1996)CrossRefGoogle Scholar
  22. 22.
    Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinform. 10, 120 (2009)CrossRefGoogle Scholar
  23. 23.
    Zeira, R., Shamir, R.: Sorting by cuts, joins, and whole chromosome duplications. J. Comput. Biol. 24(2), 127–137 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Aniket C. Mane
    • 1
  • Manuel Lafond
    • 2
  • Pedro Feijão
    • 3
  • Cedric Chauve
    • 1
    Email author
  1. 1.Department of MathematicsSimon Fraser UniversityBurnabyCanada
  2. 2.Department of Computer ScienceUniversité de SherbrookeSherbrookeCanada
  3. 3.School of Computing ScienceSimon Fraser UniversityBurnabyCanada

Personalised recommendations