On the Non-uniqueness of Solutions to the Perfect Phylogeny Mixture Problem

  • Dikshant Pradhan
  • Mohammed El-KebirEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11183)


Tumors exhibit extensive intra-tumor heterogeneity, the presence of groups of cellular populations with distinct sets of somatic mutations. This heterogeneity is the result of an evolutionary process, described by a phylogenetic tree. The problem of reconstructing a phylogenetic tree T given bulk sequencing data from a tumor is more complicated than the classic phylogeny inference problem. Rather than observing the leaves of T directly, we are given mutation frequencies that are the result of mixtures of the leaves of T. The majority of current tumor phylogeny inference methods employ the perfect phylogeny evolutionary model. In this work, we show that the underlying Perfect Phylogeny Mixture combinatorial problem typically has multiple solutions. We provide a polynomial-time computable upper bound on the number of solutions. We use simulations to identify factors that contribute to and counteract non-uniqueness of solutions. In addition, we study the sampling performance of current methods, identifying significant biases.


Perfect Phylogeny Bulk Sequencing Data Spanning Arborescence Long-read Sequencing Single-cell Sequencing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. The authors thank the anonymous referees for insightful comments that have improved the manuscript.


  1. 1.
    Deshwar, A.G., et al.: Abstract B2–59: PhyloSpan: Using multi-mutation reads to resolve subclonal architectures from heterogeneous tumor samples. Cancer Res. 75(22 Suppl. 2), B2-59–B2-59 (2015)Google Scholar
  2. 2.
    Deshwar, A.G., et al.: PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors. Genome Biol. 16(1), 35 (2015)CrossRefGoogle Scholar
  3. 3.
    El-Kebir, M., Oesper, L., Acheson-Field, H., Raphael, B.J.: Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. Bioinformatics 31(12), i62–i70 (2015)Google Scholar
  4. 4.
    El-Kebir, M., Satas, G., Oesper, L., Raphael, B.J.: Inferring the mutational history of a tumor using multi-state perfect phylogeny mixtures. Cell Syst. 3(1), 43–53 (2016)Google Scholar
  5. 5.
    El-Kebir, M., Satas, G., Raphael, B.J.: Inferring parsimonious migration histories for metastatic cancers. Nature Genetics 50(5), 718–726 (2018)Google Scholar
  6. 6.
    Fisher, R., Pusztai, L., Swanton, C.: Cancer heterogeneity: implications for targeted therapeutics. Br. J. Cancer 108(3), 479–485 (2013)CrossRefGoogle Scholar
  7. 7.
    Gabow, H.N., Myers, E.W.: Finding all spanning trees of directed and undirected graphs. SIAM J. Comput. 7(3), 280–287 (1978)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gerstung, M., et al.: PCAWG Evolution, Heterogeneity Working Group, and PCAWG network. The evolutionary history of 2,658 cancers. bioRxiv, p. 161562, July 2017Google Scholar
  9. 9.
    Jamal-Hanjani, M., et al.: Trackingthe evolution of non-small-cell lung cancer. New Engl. J. Med. 376(22), 2109–2121 (2017)CrossRefGoogle Scholar
  10. 10.
    Jiang, Y., Qiu, Y., Minn, A.J., Zhang, N.R.: Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing. Proc. National Acad. Sci. United States Am. 113(37), E5528–37 (2016)Google Scholar
  11. 11.
    Jiao, W., Vembu, S., Deshwar, A.G., Stein, L., Morris, Q.: Inferring clonal evolution of tumors from single nucleotide somatic mutations. BMC Bioinform. 15, 35 (2014)CrossRefGoogle Scholar
  12. 12.
    Kandoth, C., et al.: Mutational landscape and significance across 12 major cancer types. Nature 502(7471), 333–339 (2013)CrossRefGoogle Scholar
  13. 13.
    Kirchhoff, G.: Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Annalen der Physik 148, 497–508 (1847)CrossRefGoogle Scholar
  14. 14.
    Livne, N.: A note on #P-completeness of NP-witnessing relations. Inf. Process. Lett. 109(5), 259–261 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Łuksza, M., et al.: A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551(7681), 517 (2017)Google Scholar
  16. 16.
    Malikic, S., Jahn, K., Kuipers, J., Sahinalp, C., Beerenwinkel, N.: Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data. bioRxiv, p. 234914, December 2017Google Scholar
  17. 17.
    Malikic, S., McPherson, A.W., Donmez, N., Sahinalp, C.S.: Clonality inference in multiple tumor samples using phylogeny. Bioinformatics 31(9), 1349–1356 (2015)CrossRefGoogle Scholar
  18. 18.
    McGranahan, N., et al.: Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci. Trans. Med. 7(283), 283ra54 (2015)Google Scholar
  19. 19.
    Nowell, P.C.: The clonal evolution of tumor cell populations. Science 194(4260), 23–8 (1976)CrossRefGoogle Scholar
  20. 20.
    Popic, V., Salari, R., Hajirasouliha, I., Kashef-Haghighi, D., West, R.B., Batzoglou, S.: Fast and scalable inference of multi-sample cancer lineages. Genome Biol. 16(1), 91 (2015)CrossRefGoogle Scholar
  21. 21.
    Propp, J.G., Wilson, D.B., James Gary Propp and David Bruce Wilson: How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. J. Algorithms 27(2), 170–217 (1998)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Schwartz, R., Schäffer, A.A., Russell Schwartz and Alejandro: The evolution of tumour phylogenetics: principles and practice. Nature Rev. Genet. 18(4), 213–229 (2017)CrossRefGoogle Scholar
  23. 23.
    Strino, F., Parisi, F., Micsinai, M., Kluger, Y.: Trap: a tree approach for fingerprinting subclonal tumor composition. Nucleic Acids Res. 41(17), e165 (2013)CrossRefGoogle Scholar
  24. 24.
    Tabassum, D.P., Polyak, K.: Tumorigenesis: it takes a village. Nature Rev. Cancer 15(8), 473–483 (2015)CrossRefGoogle Scholar
  25. 25.
    Turajlic, S., et al.: Tracking cancer evolution reveals constrained routes to metastases: TRACERx Renal. Cell 173(3), 581–594 (2018)Google Scholar
  26. 26.
    Turajlic, S., et al.: Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell 173(3), 581–594 (2018)Google Scholar
  27. 27.
    Tutte, W.T.: The dissection of equilateral triangles into equilateral triangles. Math. Proc. Camb. Philos. Soc. 44(4), 463–482 (1948)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Venkatesan, S., Swanton, C.: Tumor evolutionary principles: how intratumor heterogeneity influences cancer treatment and outcome. Am. Soc. Clin. Oncol. Educ. Book. 35, e141–9 (2016). American Society of Clinical Oncology. MeetingGoogle Scholar
  29. 29.
    Yuan, K., Sakoparnig, T., Markowetz, F., Beerenwinkel, N.: BitPhylogeny: a probabilistic framework for reconstructing intra-tumor phylogenies. Genome Biol. 16(1), 1 (2015)CrossRefGoogle Scholar
  30. 30.
    Zhang, A.W., et al.: Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell 173(7), 1755–1769.e22 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Computer ScienceUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations