Reconstructing the History of Syntenies Through Super-Reconciliation

  • Mattéo Delabre
  • Nadia El-MabroukEmail author
  • Katharina T. Huber
  • Manuel Lafond
  • Vincent Moulton
  • Emmanuel Noutahi
  • Miguel Sautie Castellanos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11183)


Classical gene and species tree reconciliation, used to infer the history of gene gain and loss explaining the evolution of gene families, assumes an independent evolution for each family. While this assumption is reasonable for genes that are far apart in the genome, it is clearly not suited for genes grouped in syntenic blocks, which are more plausibly the result of a concerted evolution. Here, we introduce the Super-Reconciliation model, that extends the traditional Duplication-Loss model to the reconciliation of a set of trees, accounting for segmental duplications and losses. From a complexity point of view, we show that the associated decision problem is NP-hard. We then give an exact exponential-time algorithm for this problem, assess its time efficiency on simulated datasets, and give a proof of concept on the opioid receptor genes.


Gene tree Reconciliation Duplication Loss Synteny 

Supplementary material

473852_1_En_10_MOESM1_ESM.pdf (2.6 mb)
Supplementary material 1 (pdf 2690 KB)


  1. 1.
    Abbasi, A., Grzeschik, K.: An insight into the phylogenetic history of hox linked gene families in vertebrates. BMC Evol. Biol. 7(1), 239 (2007)CrossRefGoogle Scholar
  2. 2.
    Aho, A., Yehoshua, S., Szymanski, T., Ullman, J.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Comput. 10(3), 405–421 (1981)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ajmal, W., Khan, H., Abbasi, A.: Phylogenetic investigation of human fgfr-bearing paralogons favors piecemeal duplication theory of vertebrate genome evolution. Mol. Phylogenet. Evol. 81, 49–60 (2014)CrossRefGoogle Scholar
  4. 4.
    Akerborg, O., Sennblad, B., Arvestad, L., Lagergren, J.: Simultaneous bayesian gene tree reconstruction and reconciliation analysis. Proc. Nat. Acad. Sci. USA 106(14), 57145719 (2009)CrossRefGoogle Scholar
  5. 5.
    Bansal, M., Alm, E., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12), 283291 (2012). Scholar
  6. 6.
    Bérard, S., Gallien, C., Boussau, B., Szollosi, G., Daubin, V., Tannier, E.: Evolution of gene neighborhoods within reconciled phylogenies. Bioinformatics 28(18), 382388 (2012)CrossRefGoogle Scholar
  7. 7.
    Brightwell, G., Winkler, P.: Counting linear extensions. Order 8(3), 225–242 (1991)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Constantinescu, M., Sankoff, D.: An efficient algorithm for supertrees. J. Classif. 12, 101–112 (1995)CrossRefGoogle Scholar
  9. 9.
    Dondi, R., Lafond, M., Scornavacca, C.: Reconciling multiple genes trees via segmental duplications and losses. WABI (2018, to appear)Google Scholar
  10. 10.
    Doyon, J., Ranwez, V., Daubin, V., Berry, V.: Models, algorithms and programs for phylogeny reconciliation. Briefings Bioinform. 12(5), 392400 (2011)CrossRefGoogle Scholar
  11. 11.
    Dreborg, S., Sundstrom, G., Larsson, T., Larhammar, D.: Evolution of vertebrate opioid receptors. Proc. Nat. Acad. Sci. USA 105(40), 1548715492 (2008)CrossRefGoogle Scholar
  12. 12.
    Duchemin, W.: Phylogeny of dependencies and dependencies of phylogenies in genes and genomes. Theses, Université de Lyon, Dec 2017.
  13. 13.
    Ferrier, D.: Evolution of homeobox gene clusters in animals:the giga-cluster and primary vs. secondary clustering. Frontiers in Ecology and Evolution 4(34) (2016)Google Scholar
  14. 14.
    Garcia-Fernàndez, J.: The genesis and evolution of homeobox gene clusters. Nat. Rev. Genet. 6, 881892 (2005)CrossRefGoogle Scholar
  15. 15.
    Goodman, M., Czelusniak, J., Moore, G., Romero-Herrera, A., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28, 132–163 (1979)CrossRefGoogle Scholar
  16. 16.
    Hafeez, M., Shabbir, M., Altaf, F., Abbasi, A.: Phylogenomic analysis reveals ancient segmental duplications in the human genome. Mol. Phylogenet. Evol. 94, 95–100 (2016)CrossRefGoogle Scholar
  17. 17.
    Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Thompson, J.D., Higgins, D., Gibson, T.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22), 4673–4680 (1994)CrossRefGoogle Scholar
  19. 19.
    Kumar, S., Stecher, G., Tamura, K.: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 18701874 (2016)CrossRefGoogle Scholar
  20. 20.
    Lafond, M., Ouangraoua, A., El-Mabrouk, N.: Reconstructing a supergenetree minimizing reconciliation. BMC-Genomics 16, S4 (2015). special issue of RECOMB-CG 2015Google Scholar
  21. 21.
    Larsson, T., Olsson, F., Sundstrom, G., Lundin, L., Brenner, S., Venkatesh, B., Larhammar, D.: Early vertebrate chromosome duplications and the evolution of the neuropeptide y receptor gene regions. BMC Evol. Biol. 8, 184 (2008)CrossRefGoogle Scholar
  22. 22.
    Ng, M., Wormald, N.: Reconstruction of rooted trees from subtrees. Discrete Appl. Math 69, 19–31 (1996)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Paszek, J., Gorecki, P.: Efficient algorithms for genomic duplication models. IEEE/ACM Trans. Comput. Biol. Bioinform. (2017)Google Scholar
  24. 24.
    Pruesse, G., Ruskey, F.: Generating linear extensions fast. SIAM J. Comput. 23(2), 373–386 (1994)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Semple, C.: Reconstructing minimal rooted trees. Discrete Appl. Math. 127(3), 489–503 (2003)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sjöstrand, J., Tofigh, A., Daubin, V., Arvestad, L., Sennblad, B., Lagergren, J.: A bayesian method for analyzing lateral gene transfer. Syst. Biol. 63(3), 409–420 (2014)CrossRefGoogle Scholar
  27. 27.
    Stevens, C.: The evolution of vertebrate opioid receptors. Front. Biosci. J. Virtual Libr. 14, 12471269 (2009)Google Scholar
  28. 28.
    Sundstrom, G., Dreborg, S., Larhammar, D.: Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates. PLoS ONE 5(5) (2010)Google Scholar
  29. 29.
    Szöllősi, G., Tannier, E., Daubin, V., Boussau, B.: The inference of gene trees with species trees. Syst. Biol. 64(1), e42–e62 (2014)CrossRefGoogle Scholar
  30. 30.
    Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans. Comput. BiolBioinform. 8(2), 517–535 (2011). Scholar
  31. 31.
    Duchemin, W., et al.: DeCoSTAR: Reconstructing the ancestral organization of genes or genomes using reconciled phylogenies. Genome Biol. Evol. 9(5), 1312–1319 (2017)CrossRefGoogle Scholar
  32. 32.
    Zhang, L.: On Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies. J. Comput. Biol. 4, 177–188 (1997)CrossRefGoogle Scholar
  33. 33.
    Zmasek, C.M., Eddy, S.R.: A simple algorithm to infer gene duplication and speciiation events on a gene tree. Bioinformatics 17, 821–828 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mattéo Delabre
    • 1
  • Nadia El-Mabrouk
    • 1
    Email author
  • Katharina T. Huber
    • 2
  • Manuel Lafond
    • 3
  • Vincent Moulton
    • 2
  • Emmanuel Noutahi
    • 1
  • Miguel Sautie Castellanos
    • 1
  1. 1.Département d’informatique (DIRO)Université de MontréalMontréalCanada
  2. 2.School of Computing SciencesUniversity of East AngliaNorwichUK
  3. 3.Department of Computer ScienceUniversité de SherbrookeSherbrookeCanada

Personalised recommendations