Modeling Neuron–Glia Interactions with the Brian 2 Simulator

  • Marcel StimbergEmail author
  • Dan F. M. Goodman
  • Romain Brette
  • Maurizio De PittàEmail author
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)


In spite of compelling evidence that glial cells could crucially regulate neural network activity, the vast majority of available neural simulators ignores the possible contribution of glia to neuronal physiology. Here, we show how to model glial physiology and neuron–glia interactions in the Brian 2 simulator. Brian 2 offers facilities to explicitly describe any model in mathematical terms with limited and simple simulator-specific syntax, automatically generating high-performance code from the user-provided descriptions. The flexibility of this approach allows us to model not only networks of neurons, but also individual glial cells, chemical coupling of glial cells, and the interaction between glial cells and synapses. We therefore conclude that Brian 2 provides an ideal platform to efficiently simulate glial physiology, and specifically, the influence of astrocytes on neural activity.


Brian 2 simulator Neuron–glial interactions Tripartite synapses Neuron–glial networks Astrocyte Gliotransmission 



This work was supported by Agence Nationale de la Recherche (Axode ANR-14-CE13-0003). MDP acknowledges the support of the Junior Leader Fellowship Program by “la Caixa” Banking Foundation, as well as the support by the Basque Government through the BERC 2018-2021 program and by the Spanish Ministry of Science, Innovation and Universities: BCAM Severo Ochoa accreditation SEV-2017-0718. Writing of this chapter was also partly supported by a Marie Skłodowska-Curie International Outgoing Fellowship to MDP from the European Commission (Project 331486 “Neuron-Astro-Nets”).


  1. Abbott LF (2008) Theoretical neuroscience rising. Neuron 60(3):489–495CrossRefGoogle Scholar
  2. Aleksin SG, Zheng K, Rusakov DA, Savtchenko LP (2017) ARACHNE: A neural-neuroglial network builder with remotely controlled parallel computing. PLoS Comput Biol 13(3):e1005467CrossRefGoogle Scholar
  3. Araque A, Carmignoto G, Haydon PG, Oliet SHR, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81(4):728–739CrossRefGoogle Scholar
  4. Beenhakker MP, Huguenard JR (2010) Astrocytes as gatekeepers of GABA\(_B\) receptor function. J Neurosci 30(45):15262–15276CrossRefGoogle Scholar
  5. Bezzi P, Volterra A (2001) A neuron-glia signalling network in the active brain. Curr Opin Neurobiol 11:387–394CrossRefGoogle Scholar
  6. Brette R (2012) On the design of script languages for neural simulation. Network 23(4):150–156CrossRefGoogle Scholar
  7. Brette R, Goodman DFM (2011) Vectorized algorithms for spiking neural network simulation. Neural Comput 23(6):1503–1535CrossRefGoogle Scholar
  8. Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH, Harris JFC, Zirpe M, Natschläger T, Pecevski D, Ermentrout B, Djurfeldt M, Lansner A, Rochel O, Vieville T, Muller E, Davison AP, El Boustani S, Destexhe A (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23(3):349–398CrossRefGoogle Scholar
  9. Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8(3):183–208CrossRefGoogle Scholar
  10. Cannon RC, Gewaltig M-O, Gleeson P, Bhalla US, Cornelis H, Hines ML, Howell FW, Muller E, Stiles JR, Wils S, Schutter ED (2007) Interoperability of Neuroscience Modeling Software: Current Status and Future Directions. Neuroinform 5(2):127–138CrossRefGoogle Scholar
  11. Carnevale NT, Hines ML (2006) The NEURON book. Cambridge University PressGoogle Scholar
  12. Chao TI, Rickmann M, Wolff JR (2002) The synapse-astrocyte boundary: an anatomical basis for an integrative role of glia in synaptic transmission. In: Volterra A, Magistretti PJ, Haydon PG (eds) The tripartite synapse: glia in synaptic transmission, chapter 1. Oxford University Press, New York, pp 3–23Google Scholar
  13. Dayan P, Abbott LF (2001) Theoretical neuroscience, vol 806. MIT Press, Cambridge, MAGoogle Scholar
  14. De Pittà M, Brunel N, Volterra A (2016) Astrocytes: orchestrating synaptic plasticity? Neuroscience 323:43–61CrossRefGoogle Scholar
  15. De Pittà M, Goldberg M, Volman V, Berry H, Ben-Jacob E (2009a) Glutamate-dependent intracellular calcium and IP\(_{3}\) oscillating and pulsating dynamics in astrocytes. J Biol Phys 35:383–411CrossRefGoogle Scholar
  16. De Pittà M, Volman V, Levine H, Ben-Jacob E (2009b) Multimodal encoding in a simplified model of intracellular calcium signaling. Cogn Proc 10(S1):55–70CrossRefGoogle Scholar
  17. De Pittà M, Volman V, Berry H, Ben-Jacob E (2011) A tale of two stories: astrocyte regulation of synaptic depression and facilitation. PLoS Comput Biol 7(12):e1002293CrossRefGoogle Scholar
  18. De Pittà M, Volman V, Berry H, Parpura V, Liaudet N, Volterra A, Ben-Jacob E (2013) Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comp Neurosci 6:98Google Scholar
  19. De Pittà M, Volman V, Levine H, Pioggia G, De Rossi D, Ben-Jacob E (2008) Coexistence of amplitude and frequency modulations in intracellular calcium dynamics. Phys Rev E 77(3):030903(R)CrossRefGoogle Scholar
  20. Engelman HS, MacDermott AB (2004) Presynaptic ionotropic receptors and control of transmitter release. Nature Rev 5:135–145CrossRefGoogle Scholar
  21. Falcke M (2004) Reading the patterns in living cells: the physics of Ca\(^{2+}\) signaling. Adv Phys 53(3):255–440CrossRefGoogle Scholar
  22. Fellin T, Ellenbogen JM, De Pittà M, Ben-Jacob E, Halassa M (2012) Astrocyte regulation of sleep circuits: experimental and modeling perspectives. Front Comput Neurosci 6(65)Google Scholar
  23. Fuhrmann G, Segev I, Markram H, Tsodyks M (2002) Coding of temporal information by activity-dependent synapses. J Neurophysiol 87:140–148CrossRefGoogle Scholar
  24. Gewaltig M-O, Diesmann M (2007) NEST (NEural Simulation Tool). Scholarpedia 2(4):1430CrossRefGoogle Scholar
  25. Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11(2):87–99CrossRefGoogle Scholar
  26. Goldberg M, De Pittà M, Volman V, Berry H, Ben-Jacob E (2010) Nonlinear Gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks. PLoS Comput Biol 6(8):e1000909CrossRefGoogle Scholar
  27. Goodman D, Brette R (2008) Brian: a simulator for spiking neural networks in Python. Front Neuroinform 2:5CrossRefGoogle Scholar
  28. Goodman DFM, Brette R (2009) The brian simulator. Front Neurosci 3:26Google Scholar
  29. Goodman DFM (2010) Code generation: A strategy for neural network simulators. Neuroinform 8(3):183–196CrossRefGoogle Scholar
  30. Hunter J (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95CrossRefGoogle Scholar
  31. Kloeden PE, Platen E (1992) Numerical solution of stochastic differential equationsCrossRefGoogle Scholar
  32. Lallouette J, De Pittà M, Ben-Jacob E, Berry H (2014) Sparse short-distance connections enhance calcium wave propagation in a 3D model of astrocyte networks. Front comput neurosci 8:45CrossRefGoogle Scholar
  33. Li Y, Rinzel J (1994) Equations for InsP\(_{3}\) receptor-mediated [Ca\(^{2+}\)]\(_{i}\) oscillations derived from a detailed kinetic model: A Hodgkin-Huxley like formalism. J Theor Biol 166:461–473CrossRefGoogle Scholar
  34. Martín R, Bajo-Grañeras R, Moratalla R, Perea G, Araque A (2015) Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science 349(6249):730–734CrossRefGoogle Scholar
  35. McDougal RA, Morse TM, Carnevale T, Marenco L, Wang R, Migliore M, Miller PL, Shepherd GM, Hines ML (2017) Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience. J Comput Neurosci 42(1):1–10CrossRefGoogle Scholar
  36. Mil’shtejn G (1975) Approximate integration of stochastic differential equations. Theory Probab Its Appl 19(3):557–562CrossRefGoogle Scholar
  37. Nadkarni S, Jung P, Levine H (2008) Astrocytes optimize the synaptic transmission of information. PLoS Comput Biol 4(5):e1000088CrossRefGoogle Scholar
  38. Naeem M, McDaid L, Harkim J, Wade JJ, Marsland J (2015) On the role of astroglial syncytia in self-repairing spiking neural networks. Neural Networks and Learning Systems, page, IEEE Trans In pressGoogle Scholar
  39. Navarrete M, Araque A (2010) Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 68(1):113–126CrossRefGoogle Scholar
  40. Nimmerjahn A (2009) Astrocytes going live: advances and challenges. J. Physiol. 587:1639–1647CrossRefGoogle Scholar
  41. Panatier A, Vallée J, Haber M, Murai K, Lacaille J, Robitaille R (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146:785–798CrossRefGoogle Scholar
  42. Pannasch U, Rouach N (2013) Emerging role for astroglial networks in information processing: from synapse to behavior. Trends in Neurosciences 36(7):405–417CrossRefGoogle Scholar
  43. Perea G, Araque A (2007) Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317:1083–1086CrossRefGoogle Scholar
  44. Pinheiro PS, Mulle C (2008) Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat Rev Neurosci 9:423–436CrossRefGoogle Scholar
  45. Poskanzer KE, Yuste R (2016) Astrocytes regulate cortical state switching in vivo. Proc National Acad Sci 113(19):E2675–E2684CrossRefGoogle Scholar
  46. Savtchenko LP, Rusakov DA (2014) Regulation of rhythm genesis by volume-limited, astroglia-like signals in neural networks. Phil Trans Royal Soc B biological sciences 369(1654):20130614CrossRefGoogle Scholar
  47. Savtchenko LP, Bard L, Jensen TP, Reynolds JP, Kraev I, Medvedev N, Stewart MG, Henneberger C, Rusakov DA (2018) Disentangling astroglial physiology with a realistic cell model in silico. Nat Commun 9(1):3554Google Scholar
  48. Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54:716–725CrossRefGoogle Scholar
  49. Shuai J-W, Jung P (2002) Stochastic properties of Ca\(^2+\) release of inositol 1,4,5-trisphosphate receptor clusters. Biophys J 83(1):87–97CrossRefGoogle Scholar
  50. Stiles JR, Bartol TM (2001) Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. In: Schutter ED (ed) Comput Neurosci: Realistic Model Experimentalists. CRC Press, Boca Raton, FL, pp 87–127Google Scholar
  51. Stimberg, M., Goodman, D. F. M., Benichoux V, Brette R (2014) Equation-oriented specification of neural models for simulations. Frontiers in Neuroinformatics, 8Google Scholar
  52. Tsodyks M (2005) Activity-dependent transmission in neocortical synapses. In: Chow CC, Gutkin B, Hansel D, Meunier C, Dalibard J (eds) Methods and Models in Neurophysics, pp 245–265. ElsevierGoogle Scholar
  53. Tsodyks M, Pawelzik K, Markram H (1998) Neural networks with dynamic synapses. Neural Computation 10(4):821–835CrossRefGoogle Scholar
  54. van der Walt S, Colbert S, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13(2):22–30Google Scholar
  55. Volman V, Ben-Jacob E, Levine H (2007) The astrocyte as a gatekeeper of synaptic information transfer. Neural Comput 19(2):303–326CrossRefGoogle Scholar
  56. Wade JJ, McDaid LJ, Harkin J, Crunelli V, Kelso JAS (2011) Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach. PLoS One 6(12):e29445CrossRefGoogle Scholar
  57. Wallach G, Lallouette J, Herzog N, De Pittà M, Ben-Jacob E, Berry H, Hanein Y (2014) Glutamate-mediated astrocytic filtering of neuronal activity. PLoS Comput Biol 10(12):e1003964CrossRefGoogle Scholar
  58. Zorec R, Araque A, Carmignoto G, Haydon P, Verkhratsky A, Parpura V (2012) Astroglial excitability and gliotransmission: An appraisal of Ca\(^{2+}\) as a signaling route. ASN Neuro 4(2):e00080CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sorbonne Université, INSERM, CNRS, Institut de la VisionParisFrance
  2. 2.Department of Electrical and Electronic EngineeringImperial College LondonLondonUK
  3. 3.BCAM - Basque Center for Applied MathematicsBilbaoSpain
  4. 4.Department of Statistics and NeurobiologyThe University of ChicagoChicagoUSA
  5. 5.Team BEAGLE, INRIA Rhône-AlpesVilleurbanneFrance

Personalised recommendations