Advertisement

Hyperspectral Image Classification Using Nonnegative Sparse Spectral Representation and Spatial Regularization

  • Xian-Hua HanEmail author
  • Jian Wang
  • Jian De Sun
  • Yen-Wei Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11165)

Abstract

Hyperspectral image classification is an important technique for variety of applications and a challenge task because of high dimensional features and low SNR. This study proposes a robust hyperspectral image classification approach using nonnegative sparse spectral representation and spatial regularization. Due to the nonnegative composition of material spectra, we investigate a nonnegative sparse representation for spectral analysis, which can decompose the hyper-spectrum into the composite weight, as robust spectral feature, of the possible existed spectral prototypes (called as spectral dictionary) learned from the observed scene, and then conduct the pixel-wise recognition with the decomposed weights instead of raw spectrum. Furthermore, a spatial regularization method for category probability map propagation is explored for integrating the relationship among nearby pixels, and thus can provide more robust classification map. Experimental results on several hyperspectral image datasets validate that the proposed method can achieve much more accurate classification performance than the state-of-the-art approaches.

Keywords

Hyperspectral image classification Nonnegative sparse representation Spatial regularization ADMM 

References

  1. 1.
    Bioucas-Dias, J., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., Chanussot, J.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 1(2), 6–36 (2013)CrossRefGoogle Scholar
  2. 2.
    Plaza, A., et al.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113, 110–122 (2009)CrossRefGoogle Scholar
  3. 3.
    Li, W., Du, Q.: Gabor-filtering-based nearest regularized subspace for hyperspectral image classification. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 7(4), 1012–1022 (2014)CrossRefGoogle Scholar
  4. 4.
    Li, J., Marpu, P.R., Plaza, A., Bioucas-Dias, J.M., Benediktsson, J.A.: Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 51(9), 4816–4829 (2013)CrossRefGoogle Scholar
  5. 5.
    Huang, X., Zhang, L.: An SVM ensemble approach combining spectral, structural, and semantic features for the classification of highresolution remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 51(1), 257–272 (2013)CrossRefGoogle Scholar
  6. 6.
    Waske, B., Benediktsson, J.A.: Fusion of support vector machines for classification of multisensor data. IEEE Trans. Geosci. Remote Sens. 45(12–1), 3858–3866 (2007)CrossRefGoogle Scholar
  7. 7.
    Guo, B., Gunn, S., Damper, R., Nelson, J.: Customizing kernel functions for svm-based hyperspectral image classification. IEEE Trans. Image Process. 17(4), 622–629 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wang, J., Chang, C.-I.: Independent component analysis-bases dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 47(4), 1586–1600 (2006)CrossRefGoogle Scholar
  9. 9.
    Kuo, B.-C., Li, C.-H., Yang, J.-M.: Kernel nonparametric weighted feature extraction for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 44(6), 1139–1155 (2009)Google Scholar
  10. 10.
    Guo, B., Damper, S.G.R., Nelson, J.: Band selection for hyperspectral image classification using mutual information. IEEE Geosci. Remote Sens. Lett. 3(4), 522–526 (2006)CrossRefGoogle Scholar
  11. 11.
    Camps-Valls, G., Marsheva, T.B., Zhou, D.: Semi-supervised Graph-based hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 45(10), 3044–3054 (2007)CrossRefGoogle Scholar
  12. 12.
    Dopido, I., Li, J., Marpu, P.R., Plaza, A., Bioucas-Dias, J.M., Benediktsson, J.A.: Semisupervised self-learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 51(7), 4032–4044 (2013)CrossRefGoogle Scholar
  13. 13.
    Persello, C., Bruzzone, L.: Active and semisupervised learning for the classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 52(11), 6937–6956 (2014)CrossRefGoogle Scholar
  14. 14.
    Gu, Y.F., Wang, C., You, D., Zhang, Y.H., Wang, S.Z., Zhang, Y.: Representative multiple kernel learning for classification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 55(7), 2852–2865 (2012)CrossRefGoogle Scholar
  15. 15.
    Mianji, F.A., Zhang, Y.: Robust hyperspectral classification using relevance vector machine. IEEE Trans. Geosci. Remote Sens. 49(6), 2100–2112 (2011)CrossRefGoogle Scholar
  16. 16.
    Samat, A., Du, P., Liu, S., Li, J., Cheng, L.: E2LMs: ensemble extreme learning machines for hyperspectral image classification. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 7(4), 1060–1069 (2014)Google Scholar
  17. 17.
    Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H.: Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, Article no. 258619 (2015)Google Scholar
  18. 18.
    Zhao, W., Du, S.: Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 54(8), 4544–4554 (2016)CrossRefGoogle Scholar
  19. 19.
    Li, W., Wu, G.D., Zhang, F., Du, Q.: Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote Sens. 55(2), 844–853 (2016)CrossRefGoogle Scholar
  20. 20.
    Velasco-Forero, S., Manian, V.: Improving hyperspectral image classification using spatial preprocessing. IEEE Geosci. Remote Sens. Lett. 6(2), 297–301 (2009)CrossRefGoogle Scholar
  21. 21.
    Yildirim, I., Ersoy, O.K., Yazgan, B.: Improvement of classification accuracy in remote sensing using morphological filter. Adv. Space Res. 36(5), 1003–1006 (2005)CrossRefGoogle Scholar
  22. 22.
    Wang, Y., Niu, R., Yu, X.: Anisotropic diffusion for hyperspectral imagery enhancement. IEEE Sens. J. 10(3), 469–477 (2010)CrossRefGoogle Scholar
  23. 23.
    Ghamisi, P., Benediktsson, J., Sveinsson, J.: Automatic spectral-spatial classification framework based on attribute profiles and supervised feature extraction. IEEE Trans. Geosci. Remote Sens. 52(9), 5771–5782 (2014)CrossRefGoogle Scholar
  24. 24.
    Huang, X., Lu, Q., Zhang, L., Plaza, A.: New postprocessing methods for remote sensing image classification: a systematic study. IEEE Trans. Geosci. Remote Sens. 52(11), 7140–7159 (2014)CrossRefGoogle Scholar
  25. 25.
    Tarabalka, Y., Fauvel, M., Chanussot, J., Benediktsson, J.A.: SVM and MRF-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 7(4), 736–740 (2010)CrossRefGoogle Scholar
  26. 26.
    Adams, J.B., Smith, M.O., Johnson, P.E.: Combining support vector machines and Markov random fields in an integrated framework for contextual image classification. IEEE Trans. Geosci. Remote Sens. 51(5), 2734–2752 (2013)CrossRefGoogle Scholar
  27. 27.
    Zhang, B., Li, S., Jia, X., Gao, L., Peng, M.: Adaptive Markov random field approach for classification of hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 8(5), 973–977 (2011)CrossRefGoogle Scholar
  28. 28.
    Sun, L., Wu, Z., Liu, J., Xiao, L., Wei, Z.: Supervised spectral? Spatial hyperspectral image classification with weighted Markov random fields. IEEE Trans. Geosci. Remote Sens. 53(3), 1490–1503 (2015)CrossRefGoogle Scholar
  29. 29.
    Moser, G., Serpico, S.: Spectral mixture modeling: a new analysis of rock and soil types at the viking lander 1 site. J. Geophys. Res. 91, 8098–8112 (1986)CrossRefGoogle Scholar
  30. 30.
    Settle, J., Drake, N.: Linear mixing and the estimation of ground cover proportions. Int. J. Remote Sens. 14(6), 1159–1177 (1993)CrossRefGoogle Scholar
  31. 31.
    Chang, C.-I., Wu, C.-C., Liu, W., Ouyang, Y.-C.: A new growing method for simplex-based end member extraction algorithm. IEEE Trans. Geosci. Remote Sens. 44(10), 2804–2819 (2006)CrossRefGoogle Scholar
  32. 32.
    Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRefGoogle Scholar
  33. 33.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)CrossRefGoogle Scholar
  34. 34.
    Friedman, J., Hastie, T., Hing, H., Tibshirani, R.: Pathwise coordinate optimization. Ann. Appl. Statist. 1(2), 302–332 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Graduate School of Science and Technology for InnovationYamaguchi UniversityYamaguchi CityJapan
  2. 2.Shandong Normal UniversityJiannanChina
  3. 3.Ritsumeikan UniversityKusatsuJapan

Personalised recommendations