Advertisement

Towards Ultra-High Resolution 3D Reconstruction of a Whole Rat Brain from 3D-PLI Data

  • Sharib Ali
  • Martin Schober
  • Philipp Schlömer
  • Katrin Amunts
  • Markus Axer
  • Karl Rohr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11083)

Abstract

3D reconstruction of the fiber connectivity of the rat brain at microscopic scale enables gaining detailed insight about the complex structural organization of the brain. We introduce a new method for registration and 3D reconstruction of high- and ultra-high resolution ( 64 \(\upmu \)m and 1.3 \(\upmu \)m pixel size) histological images of a Wistar rat brain acquired by 3D polarized light imaging (3D-PLI). Our method exploits multi-scale and multi-modal 3D-PLI data up to cellular resolution. We propose a new feature transform-based similarity measure and a weighted regularization scheme for accurate and robust non-rigid registration. To transform the 1.3 \(\upmu \)m ultra-high resolution data to the reference blockface images a feature-based registration method followed by a non-rigid registration is proposed. Our approach has been successfully applied to 278 histological sections of a rat brain and the performance has been quantitatively evaluated using manually placed landmarks by an expert.

Notes

Acknowledgments

This project was funded by the Helmholtz Association through the Helmholtz Portfolio theme “Supercomputing and Modeling for the Human Brain” and by the European Union through the Horizon 2020 Research and Innovation Programme under Grant Agreement No. 7202070 (Human Brain Project SGA1).

References

  1. 1.
    Ali, S., et al.: Elastic registration of high-resolution 3D PLI data of the human brain. In: Proceedings of 14th IEEE International Symposium on Biomedical Imaging (ISBI), Melbourne, Australia, 18–21 April, pp. 1151–1155 (2017)Google Scholar
  2. 2.
    Ali, S., Rohr, K., Axer, M., Amunts, K., Eils, R., Wörz, S.: Registration of ultra-high resolution 3D PLI data of human brain sections to their corresponding high-resolution counterpart. In: Proceedings of 14th IEEE International Symposium on Biomedical Imaging (ISBI), Melbourne, Australia, 18–21 April, pp. 415–419 (2017)Google Scholar
  3. 3.
    Ali, S., Wörz, S., Amunts, K., Eils, R., Axer, M., Rohr, K.: Rigid and non-rigid registration of polarized light imaging data for 3D reconstruction of the temporal lobe of the human brain at micrometer resolution. NeuroImage 181, 235–251 (2018)CrossRefGoogle Scholar
  4. 4.
    Arsigny, V., Pennec, X., Ayache, N.: Polyrigid and polyaffine transformations: a new class of diffeomorphisms for locally rigid or affine registration. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 829–837. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39903-2_101CrossRefGoogle Scholar
  5. 5.
    Axer, M., et al.: A novel approach to the human connectome: ultra-high resolution mapping of fiber tracts in the brain. NeuroImage 54(2), 1091–1101 (2011)CrossRefGoogle Scholar
  6. 6.
    Biesdorf, A., Wörz, S., Kaiser, H.-J., Stippich, C., Rohr, K.: Hybrid spline-based multimodal registration using local measures for joint entropy and mutual information. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 607–615. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04268-3_75CrossRefGoogle Scholar
  7. 7.
    Chou, P., Pagano, N.: Elasticity - Tensor, Dyadic, and Engineering Approaches. Dover Publications Inc., Mineola (1992)Google Scholar
  8. 8.
    Kohlrausch, J., Rohr, K., Stiehl, H.: A new class of elastic body splines for nonrigid registration of medical images. J. Math. Imaging Vis. 23(3), 253–280 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lebenberg, J., et al.: Validation of MRI-based 3D digital atlas registration with histological and autoradiographic volumes: an anatomofunctional transgenic mouse brain imaging study. NeuroImage 51, 1037–1046 (2010)CrossRefGoogle Scholar
  10. 10.
    Majka, P., Wójcik, D.: Possum-a framework for three-dimensional reconstruction of brain images from serial sections. Neuroinformatics 14(3), 265–278 (2016)CrossRefGoogle Scholar
  11. 11.
    Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3D structure from serial histological sections. Image Vis. Comput. 19(1), 25–31 (2001)CrossRefGoogle Scholar
  12. 12.
    Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal processing approach. Internat. J. Comput. Vis. 81(1), 24–52 (2009)CrossRefGoogle Scholar
  13. 13.
    Schubert, N.: 3D reconstructed cyto-, muscarinic M2 receptor, and fiber architecture of the rat brain registered to the waxholm space atlas. Front. in Neuroanat. 10, 51 (2016)CrossRefGoogle Scholar
  14. 14.
    Thévenaz, P., Ruttimann, U., Unser, M.: A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7(1), 27–41 (1998)CrossRefGoogle Scholar
  15. 15.
    Wörz, S., Rohr, K.: Spline-based hybrid image registration using landmark and intensity information based on matrix-valued non-radial basis functions. Int. J. Comput. Vis. 106(1), 76–92 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sharib Ali
    • 1
  • Martin Schober
    • 2
  • Philipp Schlömer
    • 2
  • Katrin Amunts
    • 2
    • 3
  • Markus Axer
    • 2
  • Karl Rohr
    • 1
  1. 1.Department of Bioinformatics, Biomedical Computer Vision Group, BIOQUANT, IPMB, DKFZUniversity of HeidelbergHeidelbergGermany
  2. 2.Research Centre JülichInstitute of Neuroscience and Medicine 1JülichGermany
  3. 3.Cécile and Oskar Vogt Institute of Brain ResearchHeinrich Heine University Düsseldorf, University Hospital DüsseldorfDüsseldorfGermany

Personalised recommendations