Advertisement

Temporomandibular Joint Morphology and Orthognathic Surgery

  • Ryan Patrick O’Sullivan
  • Onur KadiogluEmail author
  • G. Fräns Currier
  • Steven M. Sullivan
  • Tara Beard
  • Dee Wu
Chapter

Abstract

Orthognathic surgery is one of the most important treatment options available to an orthodontist, especially in cases of significant skeletal malocclusions. In order to accurately measure any changes that may have occurred following orthognathic surgery, data regarding shape changes occurring in the temporomandibular joint is necessary. CBCT imaging can provide more complete three-dimensional information related to these changes than has been possible in the past. The use of three-dimensional CBCT data has allowed for a more complete analysis of changes that have taken place in the TMJ with orthognathic surgery, with changes primarily taking place bilaterally in posterior, superior, and lateral aspects of the condylar heads and posterior regions of the fossae.

Keywords

Temporomandibular joint TMJ Cone beam computed tomography CBCT Stratovan checkpoint 

References

  1. 1.
    Steinhäuser EW. Historical development of orthognathic surgery. J Craniomaxillofac Surg. 1996;24(4):195–204.CrossRefGoogle Scholar
  2. 2.
    Bailey LTJ, Cevidanes LH, Proffit WR. Stability and predictability of orthognathic surgery. Am J Orthod Dentofac Orthop. 2004;126(3):273.CrossRefGoogle Scholar
  3. 3.
    Proffit WR, Turvey TA, Phillips C. The hierarchy of stability and predictability in orthognathic surgery with rigid fixation: an update and extension. Head Face Med. 2007;3(1):21.CrossRefGoogle Scholar
  4. 4.
    Kretschmer WB, et al. Transverse stability of 3-piece Le Fort I osteotomies. J Oral Maxillofac Surg. 2011;69(3):861–9.CrossRefGoogle Scholar
  5. 5.
    Proffit WR, Turvey TA, Phillips C. Orthognathic surgery: a hierarchy of stability. Int J Adult Orthodon Orthognath Surg. 1996;11(3):191–204.PubMedGoogle Scholar
  6. 6.
    Arnett GW, Tamborello JA. Progressive class II development: female idiopathic condylar resorption. Oral Maxillofac Surg Clin North Am. 1990;2:699–716.Google Scholar
  7. 7.
    Moore KE, Gooris PJJ, Stoelinga PJW. The contributing role of condylar resorption to skeletal relapse following mandibular advancement surgery: report of five cases. J Oral Maxillofac Surg. 1991;49(5):448–60.CrossRefGoogle Scholar
  8. 8.
    Joss CU, Vassalli IM. Stability after bilateral sagittal split osteotomy advancement surgery with rigid internal fixation: a systematic review. J Oral Maxillofac Surg. 2009;67(2):301–13.CrossRefGoogle Scholar
  9. 9.
    Hoppenreijs TJM, et al. Condylar remodelling and resorption after Le Fort I and bimaxillary osteotomies in patients with anterior open bite: a clinical and radiological study aesthetic and reconstructive surgery. Int J Oral Maxillofac Surg. 1998;27(2):81–91.CrossRefGoogle Scholar
  10. 10.
    Alder ME, et al. Short-term changes of condylar position after sagittal split osteotomy for mandibular advancement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87(2):159–65.CrossRefGoogle Scholar
  11. 11.
    Will LA, et al. Condylar position following mandibular advancement: its relationship to relapse. J Oral Maxillofac Surg. 1984;42(9):578–88.CrossRefGoogle Scholar
  12. 12.
    Marmulla R, Mühling J. Computer-assisted condyle positioning in orthognathic surgery. J Oral Maxillofac Surg. 2007;65(10):1963–8.CrossRefGoogle Scholar
  13. 13.
    Arnett GW. A redefinition of bilateral sagittal osteotomy (BSO) advancement relapse. Am J Orthod Dentofac Orthop. 1993;104(5):506–15.CrossRefGoogle Scholar
  14. 14.
    Kundert M, Hadjianghelou O. Condylar displacement after sagittal splitting of the mandibular rami: a short-term radiographic study. J Maxillofac Surg. 1980;8:278–87.CrossRefGoogle Scholar
  15. 15.
    Han JJ, Hwang SJ. Three-dimensional analysis of postoperative returning movement of perioperative condylar displacement after bilateral sagittal split ramus osteotomy for mandibular setback with different fixation methods. J Craniomaxillofac Surg. 2015;43(9):1918–25.CrossRefGoogle Scholar
  16. 16.
    Rotskoff KS, Herbosa EG, Villa P. Maintenance of condyle-proximal segment position in orthognathic surgery. J Oral Maxillofac Surg. 1991;49(1):2–7.CrossRefGoogle Scholar
  17. 17.
    Freihofer HPM, Petreśevié D. Late results after advancing the mandible by sagittal splitting of the rami. J Maxillofac Surg. 1975;3:250–7.CrossRefGoogle Scholar
  18. 18.
    Bouwman JPB, Kerstens HC, Tuinzing DB. Condylar resorption in orthognathic surgery: the role of intermaxillary fixation. Oral Surg Oral Med Oral Pathol. 1994;78(2):138–41.CrossRefGoogle Scholar
  19. 19.
    Kerstens HCJ, et al. Condylar atrophy and osteoarthrosis after bimaxillary surgery. Oral Surg Oral Med Oral Pathol. 1990;69(3):274–80.CrossRefGoogle Scholar
  20. 20.
    Mobarak KA, et al. Mandibular advancement surgery in high-angle and low-angle class II patients: different long-term skeletal responses. Am J Orthod Dentofac Orthop. 2001;119(4):368–81.CrossRefGoogle Scholar
  21. 21.
    Huang YL, Pogrel MA, Kaban LB. Diagnosis and management of condylar resorption. J Oral Maxillofac Surg. 1997;55(2):114–9.CrossRefGoogle Scholar
  22. 22.
    Hwang S-J, et al. Surgical risk factors for condylar resorption after orthognathic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89(5):542–52.CrossRefGoogle Scholar
  23. 23.
    Yamada K, et al. Condylar bony change, disk displacement, and signs and symptoms of TMJ disorders in orthognathic surgery patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91(5):603–10.CrossRefGoogle Scholar
  24. 24.
    Hwang S-J, et al. Non-surgical risk factors for condylar resorption after orthognathic surgery. J Craniomaxillofac Surg. 2004;32(2):103–11.CrossRefGoogle Scholar
  25. 25.
    Mousoulea S, et al. Condylar resorption in orthognathic patients after mandibular bilateral sagittal split osteotomy: a systematic review. Eur J Orthod. 2016;39(3):294–309.Google Scholar
  26. 26.
    Merkx MAW, Van Damme PA. Condylar resorption after orthognathic surgery: evaluation of treatment in 8 patients. J Craniomaxillofac Surg. 1994;22(1):53–8.CrossRefGoogle Scholar
  27. 27.
    Athanasiou AE, Mavreas D. Tomographic assessment of alterations of the temporomandibular joint after surgical correction of mandibular prognathism. Int J Adult Orthodon Orthognath Surg. 1991;6(2):105–12.PubMedGoogle Scholar
  28. 28.
    Moyers RE, Bookstein FL. The inappropriateness of conventional cephalometrics. Am J Orthod Dentofac Orthop. 1979;75(6):599–617.CrossRefGoogle Scholar
  29. 29.
    Spitzer W, Rettinger G, Sitzmann F. Computerized tomography examination for the detection of positional changes in the temporomandibular joint after ramus osteotomies with screw fixation. J Maxillofac Surg. 1984;12:139–42.CrossRefGoogle Scholar
  30. 30.
    Sund G, Eckerdal O, Åstrand P. Changes in the temporomandibular joint after oblique sliding osteotomy of the mandibular rami: a longitudinal radiological study. J Maxillofac Surg. 1983;11:87–91.CrossRefGoogle Scholar
  31. 31.
    Woodside DG, Metaxas A, Altuna G. The influence of functional appliance therapy on glenoid fossa remodeling. Am J Orthod Dentofac Orthop. 1987;92(3):181–98.CrossRefGoogle Scholar
  32. 32.
    Hackney FL, Van Sickels JE, Nummikoski PV. Condylar displacement and temporomandibular joint dysfunction following bilateral sagittal split osteotomy and rigid fixation. J Oral Maxillofac Surg. 1989;47(3):223–7.CrossRefGoogle Scholar
  33. 33.
    Stroster TG, Pangrazio-Kulbersh V. Assessment of condylar position following bilateral sagittal split ramus osteotomy with wire fixation or rigid fixation. Int J Adult Orthodon Orthognath Surg. 1993;9(1):55–63.Google Scholar
  34. 34.
    Cutbirth M, Van Sickels JE, Thrash WJ. Condylar resorption after bicortical screw fixation of mandibular advancement. J Oral Maxillofac Surg. 1998;56(2):178–82.CrossRefGoogle Scholar
  35. 35.
    Kawamata A, et al. Three-dimensional computed tomography evaluation of postsurgical condylar displacement after mandibular osteotomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(4):371–6.CrossRefGoogle Scholar
  36. 36.
    Ruf S, Pancherz H. Temporomandibular joint remodeling in adolescents and young adults during Herbst treatment: a prospective longitudinal magnetic resonance imaging and cephalometric radiographic investigation. Am J Orthod Dentofac Orthop. 1999;115(6):607–18.CrossRefGoogle Scholar
  37. 37.
    Hu J, Wang D, Zou S. Effects of mandibular setback on the temporomandibular joint: a comparison of oblique and sagittal split ramus osteotomy. J Oral Maxillofac Surg. 2000;58(4):375–80.CrossRefGoogle Scholar
  38. 38.
    Voudouris JC, et al. Condyle-fossa modifications and muscle interactions during Herbst treatment, part 1. New technological methods. Am J Orthod Dentofac Orthop. 2003;123(6):604–13.CrossRefGoogle Scholar
  39. 39.
    Katsumata A, et al. Condylar head remodeling following mandibular setback osteotomy for prognathism: a comparative study of different imaging modalities. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(4):505–14.CrossRefGoogle Scholar
  40. 40.
    Cortez ALV, Passeri LA. Radiographic assessment of the condylar position after Le Fort I osteotomy in patients with asymptomatic temporomandibular joints: a prospective study. J Oral Maxillofac Surg. 2007;65(2):237–41.CrossRefGoogle Scholar
  41. 41.
    Ueki K, et al. Changes in temporomandibular joint and ramus after sagittal split ramus osteotomy in mandibular prognathism patients with and without asymmetry. J Craniomaxillofac Surg. 2012;40(8):821–7.CrossRefGoogle Scholar
  42. 42.
    Hatcher DC. Operational principles for cone-beam computed tomography. J Am Dent Assoc. 2010;141:3S–6S.CrossRefGoogle Scholar
  43. 43.
    Mozzo P, et al. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol. 1998;8(9):1558–64.CrossRefGoogle Scholar
  44. 44.
    Nemtoi A, et al. Cone beam CT: a current overview of devices. Dentomaxillofac Radiol. 2013;42(8):20120443.CrossRefGoogle Scholar
  45. 45.
    Vandenberghe B, Jacobs R, Bosmans H. Modern dental imaging: a review of the current technology and clinical applications in dental practice. Eur Radiol. 2010;20(11):2637–55.CrossRefGoogle Scholar
  46. 46.
    Chen S, et al. Short-and long-term changes of condylar position after bilateral sagittal split ramus osteotomy for mandibular advancement in combination with Le Fort I osteotomy evaluated by cone-beam computed tomography. J Oral Maxillofac Surg. 2013;71(11):1956–66.CrossRefGoogle Scholar
  47. 47.
    Lascala CA, Panella J, Marques MM. Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillofac Radiol. 2004;33(5):291–4.CrossRefGoogle Scholar
  48. 48.
    Loubele M, et al. A comparison of jaw dimensional and quality assessments of bone characteristics with cone-beam CT, spiral tomography, and multi-slice spiral CT. Int J Oral Maxillofac Implants. 2007;22(3):446–54.PubMedGoogle Scholar
  49. 49.
    De Vos W, Casselman J, Swennen G. Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral Maxillofac Surg. 2009;38(6):609–25.CrossRefGoogle Scholar
  50. 50.
    Kobayashi K, et al. Accuracy in measurement of distance using limited cone-beam computerized tomography. Int J Oral Maxillofac Implants. 2004;19(2):228–31.PubMedGoogle Scholar
  51. 51.
    Hilgers ML, et al. Accuracy of linear temporomandibular joint measurements with cone beam computed tomography and digital cephalometric radiography. Am J Orthod Dentofac Orthop. 2005;128(6):803–11.CrossRefGoogle Scholar
  52. 52.
    Honey OB, et al. Accuracy of cone-beam computed tomography imaging of the temporomandibular joint: comparisons with panoramic radiology and linear tomography. Am J Orthod Dentofac Orthop. 2007;132(4):429–38.CrossRefGoogle Scholar
  53. 53.
    Zhang Z-l, et al. Measurement accuracy of temporomandibular joint space in Promax 3-dimensional cone-beam computerized tomography images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2012;114(1):112–7.CrossRefGoogle Scholar
  54. 54.
    Cevidanes LHS, et al. Superimposition of 3D cone-beam CT models of orthognathic surgery patients. Dentomaxillofac Radiol. 2005;34(6):369–75.CrossRefGoogle Scholar
  55. 55.
    Cevidanes LHS, et al. Three-dimensional cone-beam computed tomography for assessment of mandibular changes after orthognathic surgery. Am J Orthod Dentofac Orthop. 2007;131(1):44–50.CrossRefGoogle Scholar
  56. 56.
    Ikeda K, Kawamura A. Assessment of optimal condylar position with limited cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2009;135(4):495–501.CrossRefGoogle Scholar
  57. 57.
    Kim YI, et al. The assessment of the short-and long-term changes in the condylar position following sagittal split ramus osteotomy (SSRO) with rigid fixation. J Oral Rehabil. 2010;37(4):262–70.CrossRefGoogle Scholar
  58. 58.
    Kim Y-I, et al. Cone-beam computerized tomography evaluation of condylar changes and stability following two-jaw surgery: Le Fort I osteotomy and mandibular setback surgery with rigid fixation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111(6):681–7.CrossRefGoogle Scholar
  59. 59.
    Motta AT, et al. Three-dimensional regional displacements after mandibular advancement surgery: one year of follow-up. J Oral Maxillofac Surg. 2011;69(5):1447–57.CrossRefGoogle Scholar
  60. 60.
    De Clerck H, et al. Three-dimensional assessment of mandibular and glenoid fossa changes after bone-anchored class III intermaxillary traction. Am J Orthod Dentofac Orthop. 2012;142(1):25–31.CrossRefGoogle Scholar
  61. 61.
    Park S-B, et al. Effect of bimaxillary surgery on adaptive condylar head remodeling: metric analysis and image interpretation using cone-beam computed tomography volume superimposition. J Oral Maxillofac Surg. 2012;70(8):1951–9.CrossRefGoogle Scholar
  62. 62.
    LeCornu M, et al. Three-dimensional treatment outcomes in class II patients treated with the Herbst appliance: a pilot study. Am J Orthod Dentofac Orthop. 2013;144(6):818–30.CrossRefGoogle Scholar
  63. 63.
    Chen S, et al. Three-dimensional evaluation of condylar morphology remodeling after orthognathic surgery in mandibular retrognathism by cone-beam computed tomography. J Peking Univ. 2015;47(4):703–7.Google Scholar
  64. 64.
    Xi T, et al. 3D analysis of condylar remodelling and skeletal relapse following bilateral sagittal split advancement osteotomies. J Craniomaxillofac Surg. 2015;43(4):462–8.CrossRefGoogle Scholar
  65. 65.
    Ikeda R. Clinical application of a novel three-dimensional analysis to evaluate temporomandibular joint space changes after orthognathic surgery. San Francisco, CA: University of California; 2014. p. 107.Google Scholar
  66. 66.
    Ikeda R, et al. Novel 3-dimensional analysis to evaluate temporomandibular joint space and shape. Am J Orthod Dentofac Orthop. 2016;149(3):416–28.CrossRefGoogle Scholar
  67. 67.
    Contro C. Evaluating condylar head morphology as it relates to the skeletal vertical facial dimension: a three-dimensional semi-automated landmark study. San Francisco, CA: University of California; 2015. p. 50.Google Scholar
  68. 68.
    Sanromán JF, et al. Morphometric and morphological changes in the temporomandibular joint after orthognathic surgery: a magnetic resonance imaging and computed tomography prospective study. J Cranio-Maxillofac Surg. 1997;25(3):139–48.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ryan Patrick O’Sullivan
    • 1
  • Onur Kadioglu
    • 2
    Email author
  • G. Fräns Currier
    • 2
  • Steven M. Sullivan
    • 3
  • Tara Beard
    • 4
  • Dee Wu
    • 5
  1. 1.Private PracticeFayettevilleUSA
  2. 2.Division of Orthodontics, Department of Developmental SciencesUniversity of Oklahoma Health Sciences Center College of DentistryOklahoma CityUSA
  3. 3.Deparment of Surgical SciencesUniversity of Oklahoma Health Sciences Center College of DentistryOklahoma CityUSA
  4. 4.University of Oklahoma Health Sciences Center College of DentistryOklahoma CityUSA
  5. 5.Department of Radiological SciencesUniversity of Oklahoma Health Sciences Center College of MedicineOklahoma CityUSA

Personalised recommendations