Advertisement

Imaging and Analysis for the Orthodontic Patient

  • Jae Hyun ParkEmail author
  • Dawn P. Pruzansky
Chapter

Abstract

Cone-beam computed tomography (CBCT) has become an integral component of orthodontic diagnosis and treatment planning. The leap from 2D to 3D analysis has allowed for a more comprehensive evaluation before, during, and after orthodontic therapy. CBCT has been instrumental in localizing impacted teeth; evaluating asymmetry, airway, and temporomandibular joint anatomy; selecting sites for temporary skeletal anchorage; and assessing root length and alveolar bone dimensions. In this chapter, CBCT imaging and analysis of the orthodontic patient will be discussed.

Keywords

CBCT 3D cephalometric image 3D superimposition 3D analysis Orthodontics 

References

  1. 1.
    Ricketts RM. The evolution of diagnosis to computerized cephalometrics. Am J Orthod. 1969;55:795–803.CrossRefGoogle Scholar
  2. 2.
    Weems RA. Radiographic cephalometry technique. In: Jacobson A, Jacobson RL, editors. Radiographic cephalometry: from basics to 3-D imaging. Hanover Park, IL: Quintessence Publishing; 2006. p. 33–43.Google Scholar
  3. 3.
    Hounsfield GN. Computerized transverse axial scanning (tomography). Description of system. Br J Radiol. 1973;46:1016–22.CrossRefGoogle Scholar
  4. 4.
    The Nobel Prize in physiology or medicine 1979. https://www.nobelprize.org/nobel_prizes/medicine/laureates/1979/. Accessed 6 Sep 2016.
  5. 5.
    Preston CB, Guan G. The relationship between conventional x-ray cephalometrics and cone-beam computed tomography. In: Park JH, editor. Computed tomography: new research. New York, NY: Nova Science Publishers, Inc.; 2013. p. 195–220.Google Scholar
  6. 6.
    Smith-Bindman R, Lipson J, Marcus R, Kim KP, Mahesh M, Gould R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169:2078–86.CrossRefGoogle Scholar
  7. 7.
    Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.CrossRefGoogle Scholar
  8. 8.
    Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol. 1998;8:1558–64.CrossRefGoogle Scholar
  9. 9.
    Cattaneo PM, Bloch CB, Calmar D, Hjortshoj M, Melsen B. Comparison between conventional and cone-beam computed tomography – generated cephalograms. Am J Orthod Dentofac Orthop. 2008;134:798–802.CrossRefGoogle Scholar
  10. 10.
    Agrawal JM, Agrawal MS, Nanjannawar LG, Parushetti AD. CBCT in orthodontics: the wave of future. J Contemp Dent Practice. 2013;14:153–7.CrossRefGoogle Scholar
  11. 11.
    Tai K, Yanagi Y, Park JH, Asaumi J. Clinical application of three-dimensional cone-beam computed tomography in orthodontics. In: Park JH, editor. Computed tomography: new research. New York, NY: Nova Science Publishers, Inc.; 2013. p. 255–66.Google Scholar
  12. 12.
    Park JH, Tai K, Owtad P. 3-Dimensional cone-beam computed tomography superimposition: a review. Semin Orthod. 2015;21:263–73.CrossRefGoogle Scholar
  13. 13.
    Cevidanes LH, Styner MA, Proffit WR. Image analysis and superimposition of 3-dimensional cone-beam computed tomography models. Am J Orthod Dentofac Orthop. 2006;129:611–8.CrossRefGoogle Scholar
  14. 14.
    da Motta AT, de Assis Ribeiro Carvalho F, Oliveira AE, Cevidanes LH, de Oliveira Almeida MA. Superimposition of 3D cone-beam CT models in orthognathic surgery. Dent Press J Orthod. 2010;15:39–41.CrossRefGoogle Scholar
  15. 15.
    Becker A, Chaushu S, Casap-Caspi N. Cone-beam computed tomography and the orthosurgical management of impacted teeth. JADA. 2010;141(Suppl 3):14S–8S.PubMedGoogle Scholar
  16. 16.
    Kochel J, Meyer-Marcotty P, Strnad F, et al. 3D soft tissue analysis—part 1: sagittal parameters. J Orofac Orthop. 2010;71:40–52.CrossRefGoogle Scholar
  17. 17.
    Kochel J, Meyer-Marcotty P, Kochel M, et al. 3D soft tissue analysis—part 2: vertical parameters. J Orofac Orthop. 2010;71:207–20.CrossRefGoogle Scholar
  18. 18.
    Farronato G, Garagiola U, Dominici A, et al. “Ten-point” 3D cephalometric analysis using low-dosage cone beam computed tomography. Prog Orthod. 2010;11:2–12.CrossRefGoogle Scholar
  19. 19.
    Bayome M, Park JH, Kook YA. New three-dimensional cephalometric analyses among adults with a skeletal class I pattern and normal occlusion. Korean J Orthod. 2013;43:62–73.CrossRefGoogle Scholar
  20. 20.
    Harvold E. Cleft lip and palate: morphologic studies of the facial skeleton. Am J Orthod. 1954;40:493–506.CrossRefGoogle Scholar
  21. 21.
    Swennen GR, Schutyser F, Barth EL, De Groeve P, De Mey A. A new method of 3-D cephalometry part I: the anatomic Cartesian 3-D reference system. J Craniofac Surg. 2006;17:314–25.CrossRefGoogle Scholar
  22. 22.
    Park JU, Kook YA, Kim Y. Assessment of asymmetry in a normal occlusion sample and asymmetric patients with three-dimensional conebeam computed tomography: a study for a transverse reference plane. Angle Orthod. 2012;82:860–7.CrossRefGoogle Scholar
  23. 23.
    Kook YA, Kim Y. Evaluation of facial asymmetry with three-dimensional cone-beam computed tomography. J Clin Orthod. 2011;45:112–5.PubMedGoogle Scholar
  24. 24.
    Gupta A, Kharbanda OP, Balachandran R, Sardana V, Kalra S, Chaurasia S, et al. Precision of manual landmark identification between as-received and oriented volume-rendered cone-beam computed tomography images. Am J Orthod Dentofac Orthop. 2017;151:118–31.CrossRefGoogle Scholar
  25. 25.
    Heon JC. Three-dimensional superimposition. PCSO Bull. 2010;82:23–6.Google Scholar
  26. 26.
    Kapila S, Conley RS, Harrell WE Jr. The current status of cone beam computed tomography imaging in orthodontics. Dentomaxillofac Radiol. 2011;40:24–34.CrossRefGoogle Scholar
  27. 27.
    Cevidanes LH, Heymann G, Cornelis MA, DeClerck HJ, Tulloch JF. Superimposition of 3-dimensional cone-beam computed tomography models of growing patients. Am J Orthod Dentofac Orthop. 2009;136:94–9.CrossRefGoogle Scholar
  28. 28.
    Mah JK, Yi L, Huang RC, Choo H. Advanced applications of cone beam computed tomography in orthodontics. Semin Orthod. 2011;17:57–71.CrossRefGoogle Scholar
  29. 29.
    Cevidanes LH, Oliveira AE, Grauer D, Styner M, Proffit WR. Clinical application of 3D imaging for assessment of treatment outcomes. Semin Orthod. 2011;17:72–80.CrossRefGoogle Scholar
  30. 30.
    Nguyen T, Cevidanes L, Paniagua B, Zhu H, Koerich L, De Clerck H. Use of shape correspondence analysis to quantify skeletal changes associated with bone-anchored class III correction. Angle Orthod. 2014;84:329–36.CrossRefGoogle Scholar
  31. 31.
    Tai K, Park JH, Mishima K, Shin JW. 3-Dimensional cone beam computed tomography analysis of transverse changes with Schwarz appliances on both jaws. Angle Orthod. 2011;81:670–7.CrossRefGoogle Scholar
  32. 32.
    Tai K, Park JH. Superimposition of 3-dimensional conebeam computed tomography for 2-dimensional image analysis. In: Park JH, editor. Computed tomography: new research. New York, NY: Nova Science Publishers, Inc.; 2013. p. 457–75.Google Scholar
  33. 33.
    Rayapudi N, Padmalatha C, Gandikopta CS, Yudhistar PV, Tircoveluri S. A comparative study of linear measurements of facial skeleton using computed tomography and traditional cephalometry. APOS Trends Orthod. 2013;3:7.CrossRefGoogle Scholar
  34. 34.
    Naudi KB, Benramadan R, Brocklebank L, Ju X, Khambay B, Ayoub A. The virtual human face: superimposing the simultaneously captured 3D photo realistic skin surface of the face on the untextured skin image of the CBCT scan. Int J Oral Maxillofac Surg. 2013;42:393–400.CrossRefGoogle Scholar
  35. 35.
    Tai K, Park JH, Mishima K, Hotokezaka H. Using superimposition of 3-dimensional cone-beam computed tomography images with surface-based registration in growing patients. J Clin Pediatr Dent. 2010;34:361–7.CrossRefGoogle Scholar
  36. 36.
    Tai K, Hotokezaka H, Park JH, Tai H, Miyajima K, Choi M, et al. Preliminary cone-beam computed tomography study evaluating dental and skeletal changes after treatment with a mandibular Schwarz appliance. Am J Orthod Dentofacial Orthop. 2010;138:262.e1–e11.Google Scholar
  37. 37.
    Gianquinto JR, Tuncay OC, Sciote JJ, Yang J. A method of superimposition of CBCT volumes in the posterior cranial base. Philadelphia, PA: The Temple University Digital Library. The Temple University; 2011.Google Scholar
  38. 38.
    Kau CH, Olim S, Nguyen JT. The future of orthodontic diagnostic records. Semin Orthod. 2011;17:6.CrossRefGoogle Scholar
  39. 39.
    Heymann GC, Cevidanes L, Cornelis M, DeClerck HJ, Tulloch JF. Three-dimensional analysis of maxillary protraction with intermaxillary elastics to miniplates. Am J Orthod Dentofac Orthop. 2010;137:274–84.CrossRefGoogle Scholar
  40. 40.
    Swennen GR, Mollemans W, DeClercq C, Abeloos J, Lamoral P, Lippens F, et al. A cone-beam computed tomography triple scan procedure to obtain a three-dimensional augmented virtual skull model appropriate for orthognathic surgery planning. J Craniofac Surg. 2009;20:297–307.CrossRefGoogle Scholar
  41. 41.
    Nada RM, Maal TJ, Breuning KH, Berge SJ, Mostafa YA, Kuijpers-Jagtman AM. Accuracy and reproducibility of voxel based superimposition of conebeam computed tomography models on the anterior cranial base and the zygomatic arches. PLoS One. 2011;6:e16520.CrossRefGoogle Scholar
  42. 42.
    Cevidanes LH, Motta A, Proffit WR, Ackerman JL, Styner M. Cranial base superimposition for 3-dimensional evaluation of soft-tissue changes. Am J Orthod Dentofac Orthop. 2010;137(Suppl 4):S120–9.CrossRefGoogle Scholar
  43. 43.
    Terajima M, Yanagita N, Ozeki K, Hoshino Y, Mori N, Goto TK, et al. Three-dimensional analysis system for orthognathic surgery patients with jaw deformities. Am J Orthod Dentofac Orthop. 2008;134:100–11.CrossRefGoogle Scholar
  44. 44.
    Grauer D, Cevidanes LS, Proffit WR. Working with DICOM craniofacial images. Am J Orthod Dentofac Orthop. 2009;136:460–70.CrossRefGoogle Scholar
  45. 45.
    Kau CH. Creation of the virtual patient for the study of facial morphology. Facial Plast Surg Clin North Am. 2011;19:615–22.CrossRefGoogle Scholar
  46. 46.
    Jayaratne YS, McGrath CP, Zwahlen RA. How accurate are the fusion of cone-beam CT and 3-D stereophotographic images? PLoS One. 2012;7:e49585.CrossRefGoogle Scholar
  47. 47.
    Park TJ, Lee SH, Lee KS. A method for mandibular dental arch superimposition using 3D conebeam CT and orthodontic 3D digital model. Korean J Orthod. 2012;42:169–81.CrossRefGoogle Scholar
  48. 48.
    Chenin DL, Chenin DA, Chenin ST, Choi J. Dynamic cone-beam computed tomography in orthodontic treatment. J Clin Orthod. 2009;43:507–12.PubMedGoogle Scholar
  49. 49.
    Lin HH, Chiang WC, Lo LJ, Sheng-Pin Hsu S, Wang CH, Wan SY. Artifact-resistant superimposition of digital dental models and cone-beam computed tomography images. J Oral Maxillofac Surg. 2013;71:1933–47.CrossRefGoogle Scholar
  50. 50.
    Cevidanes LH, Tucker S, Styner M, Kim H, Chapuis J, Reyes M, et al. Three-dimensional surgical simulation. Am J Orthod Dentofac Orthop. 2010;138:361–71.CrossRefGoogle Scholar
  51. 51.
    Ludlow JB, Gubler M, Cevidanes L, Mol A. Precision of cephalometric landmark identification: cone-beam computed tomography vs conventional cephalometric views. Am J Orthod Dentofac Orthop. 2009;136:e1–10.CrossRefGoogle Scholar
  52. 52.
    Nguyen E, Boychuk D, Orellana M. Accuracy of cone beam computed tomography in predicting the diameter of unerupted teeth. Am J Orthod Dentofac Orthop. 2011;140:e59–66.CrossRefGoogle Scholar
  53. 53.
    Lagravere MO, Carey J, Toogood RW, Major PW. Three-dimensional accuracy of measurements made with software on cone-beam computed tomography images. Am J Orthod Dentofac Orthop. 2008;134:112–6.CrossRefGoogle Scholar
  54. 54.
    Stratemann SA, Huang JC, Maki K, Miller AJ, Hatcher DC. Comparison of cone beam computed tomography imaging with physical measures. Dentomaxillofac Radiol. 2008;37:80–93.CrossRefGoogle Scholar
  55. 55.
    Periago DR, Scarfe WC, Moshiri M, Scheetz JP, Silveira AM, Farman AG. Linear accuracy and reliability of cone beam CT derived 3-dimensional images constructed using an orthodontic volumetric rendering program. Angle Orthod. 2008;78:387–95.CrossRefGoogle Scholar
  56. 56.
    Bayome M, Park JH, Kim Y, Kook YA. 3D analysis and clinical applications of CBCT images. Semin Orthod. 2015;21:254–62.CrossRefGoogle Scholar
  57. 57.
    Nur RB, Cakan DG, Arun T. Evaluation of facial hard and soft tissue asymmetry using cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2016;149:225–37.CrossRefGoogle Scholar
  58. 58.
    Akhil G, Senthil Kumar KP, Raja S, Janardhanan K. Three-dimensional assessment of facial asymmetry: a systematic review. Pharm Bioall Sci. 2015;7(Suppl 2):S433–7.CrossRefGoogle Scholar
  59. 59.
    Ras F, Habets LLMH, van Ginkel FC, Prahl-Andersen B. Method for quantifying facial asymmetry in three dimensions using stereophotogrammetry. Angle Orthod. 1995;65:233–9.PubMedGoogle Scholar
  60. 60.
    Djordjevic J, Toma AM, Zhurov AI, Richmond S. Three-dimensional quantification of facial symmetry in adolescents using laser surface scanning. Eur J Orthod. 2014;36:125–32.CrossRefGoogle Scholar
  61. 61.
    Wood R, Sun Z, Chaudhry J, Tee BC, Kim DG, Leblebicioglu B, et al. Factors affecting the accuracy of buccal alveolar bone height measurements from cone-beam computed tomography images. Am J Orthod Dentofac Orthop. 2013;143:353–63.CrossRefGoogle Scholar
  62. 62.
    Patcas R, Muller L, Ullrich O, Peltomaki T. Accuracy of cone-beam computed tomography at different resolutions assessed on the bony covering of the mandibular anterior teeth. Am J Orthod Dentofac Orthop. 2012;141:41–50.CrossRefGoogle Scholar
  63. 63.
    Da Silveira PF, Fontana MP, Oliveira HW, Vizzotto MB, Montagner F, Silveira HL, et al. CBCT-based volume of simulated root resorption – influence of FOV and voxel size. Int Endontic J. 2015;48:959–65.CrossRefGoogle Scholar
  64. 64.
    Rodrigues AF, Fraga MR, Vitral RWF. Computed tomography evaluation of the temporomandibular joint in class I malocclusion patients: condylar symmetry and condyle-fossa relationship. Am J Orthod Dentofac Orthop. 2009;136:192–8.CrossRefGoogle Scholar
  65. 65.
    Ahmad M, Hollender L, Anderson Q, Kartha K, Ohrbach R, Truelove EL. Research diagnostic criteria for temporomandibular disorders (RDC/TMD): development of image analysis criteria and examiner reliability for image analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:844–60.CrossRefGoogle Scholar
  66. 66.
    Scott B, Kulbersh R, Kaczynski R. An evaluation of condylar position in patients with temporomandibular dysfunction using cone-beam computed tomography. In: Park JH, editor. Computed tomography: new research. New York, NY: Nova Science Publishers, Inc.; 2013. p. 379–92.Google Scholar
  67. 67.
    Ikeda K, Kawamura A. Assessment of optimal condylar position with limited cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2009;135:495–501.CrossRefGoogle Scholar
  68. 68.
    Park JH, Papademetriou M, Kwon YD. Orthodontic considerations in orthognathic surgery: who does what, when, where and how? Semin Orthod. 2016;22:2–11.CrossRefGoogle Scholar
  69. 69.
    Kim KB. How has our interest in the airway changed over 100 years? Am J Orthod Dentofac Orthop. 2015;148:740–7.CrossRefGoogle Scholar
  70. 70.
    Sparks R, Ngan P, Martin C, Razmus T, Mah J, Gunel E. A comparison of airway dimensions among different skeletal craniofacial patterns. In: Park JH, editor. Computed tomography: new research. New York, NY: Nova Science Publishers, Inc.; 2013. p. 401–26.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Postgraduate Orthodontic Program, Arizona School of Dentistry and Oral HealthA.T. Still UniversityMesaUSA
  2. 2.Graduate School of DentistryKyung Hee UniversitySeoulSouth Korea

Personalised recommendations