Advertisement

3D Imaging for Craniofacial Anomalies

  • Kevin S. SmithEmail author
  • Myles Davidson
Chapter

Abstract

Craniofacial anomalies (CFAs) can arise from any type of abnormal growth or deformity of the structures of the craniofacial skeleton. The variations of these anomalies arise from a number of different factors, including genetic factors, environmental factors, and folic acid deficiencies, and can range from very mild to severe, requiring surgery. Some of the most common types of craniofacial anomalies include cleft lip/cleft palate, craniosynostosis, hemifacial microsomia, vascular malformations, hemangioma, and deformational or positional plagiocephaly. Three-dimensional imaging of these CFAs continues to evolve with advances in technology. While cone-beam computed tomography (CBCT) is often considered the workhorse for imaging of CFAs, it is not without its own limitations. Indications for alternative or adjunctive imaging modalities include soft tissue detail, inflammatory processes, and temporomandibular joint morphology. This chapter provides a review of three-dimensional imaging techniques most commonly used for the diagnosis and management of craniofacial anomalies.

Keywords

Computed tomography Structured light stereophotogrammetry Laser Facial morphometry MRI Cine MRI Angiography Craniofacial anomaly 3D imaging 

References

  1. 1.
    Petrik V, Apok V, Britton JA, Bell BA. Godfrey Hounsfield and the dawn of computed tomography. Neurosurgery. 2006;58:780–7. https://doi.org/10.1227/01.NEU.0000204309.91666.06.CrossRefPubMedGoogle Scholar
  2. 2.
    Garayoa J, Castro P. A study on image quality provided by a kilovoltage cone-beam computed tomography. J Appl Clin Med Phys. 2013;14:239–57. https://doi.org/10.1120/jacmp.v14i1.3888.CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Lechuga L, Weidlich GA. Cone beam CT vs. fan beam CT: a comparison of image quality and dose delivered between two differing CT imaging modalities. Cureus. 2016;8(9):1–13. https://doi.org/10.7759/cureus.778.CrossRefGoogle Scholar
  4. 4.
    Qu X, Li G, Ludlow JB, Zhang Z, Ma X. Effective radiation dose of ProMax 3D cone-beam computerized tomography scanner with different dental protocols. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110(6):770–6. https://doi.org/10.1016/j.tripleo.2010.06.013.CrossRefPubMedGoogle Scholar
  5. 5.
    Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS. Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol. 2015;44:1–20. https://doi.org/10.1259/dmfr.20140224.CrossRefGoogle Scholar
  6. 6.
    Davies J, Johnson B, Drage NA. Effective doses from cone beam CT investigation of the jaws. Dentomaxillofac Radiol. 2012;41:30–6. https://doi.org/10.1259/dmfr/30177908.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ludlow JB, Ivanovic M. Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:106–14. https://doi.org/10.1016/j.tripleo.2008.03.018.CrossRefPubMedGoogle Scholar
  8. 8.
    Elstrøm UV, Muren LP, Petersen JBB, Grau C. Evaluation of image quality for different kV cone-beam CT acquisition and reconstruction methods in the head and neck region. Acta Oncol. 2011;50(6):908–17. https://doi.org/10.3109/0284186X.2011.590525.CrossRefPubMedGoogle Scholar
  9. 9.
    Peyrin F, Dong P, Pacureanu A, Langer M. Micro and nano CT for the study of bone ultrastructure. Curr Osteoporos Rep. 2014;12:465–74. https://doi.org/10.1007/s11914-014-0233-0.CrossRefPubMedGoogle Scholar
  10. 10.
    Kampschulte M, Langheinirch AC, Sender J, Litzlbauer HD, Althohn U, Schwab JD, et al. Nano-computed tomography: technique and applications. Fortschr Röntgenstr. 2016;188:146–54. https://doi.org/10.1055/s-0041-106541.CrossRefGoogle Scholar
  11. 11.
    Day CJ, Lee RT. Three-dimensional assessment of the facial soft tissue changes that occur postoperatively in orthognathic patients. World J Orthod. 2006;7:15–26.PubMedGoogle Scholar
  12. 12.
    Yu Z, Mu X, Feng S, Han J, Chang T. Flip-registration procedure of three-dimensional laser surface scanning images on quantitative evaluation of facial asymmetries. J Craniofac Surg. 2009;20(1):157–60. https://doi.org/10.1097/SCS.0b013e318191ce88.CrossRefPubMedGoogle Scholar
  13. 13.
    Baik HS, Kim SY. Facial soft-tissue changes in skeletal class III orthognathic surgery patients analyzed with 3-dimensional laser scanning. Am J Orthod Dentofac Orthop. 2010;138:167–78. https://doi.org/10.1016/j.ajodo.2010.02.022.CrossRefGoogle Scholar
  14. 14.
    Soncul M, Bamber MA. Evaluation of facial soft tissue changes with optical surface scan after surgical correction of class III deformities. J Oral Maxillofac Surg. 2004;62:1331–40. https://doi.org/10.1016/j.joms.2004.04.019.CrossRefPubMedGoogle Scholar
  15. 15.
    Langdon J, Patel M, Ord R, Brennan P. Operative oral and maxillofacial surgery. 3rd ed. Boca Raton, FL: CRC Press: Taylor & Francis Group; 2010.CrossRefGoogle Scholar
  16. 16.
    Nguyen C, Nissanov J, Ozturk C, Nuveen M, Tuncay OC. Three-dimensional imaging of the craniofacial complex. Clin Orthod Res. 2000;3:46–50. https://doi.org/10.1034/j.1600-0544.2000.030108.x.CrossRefPubMedGoogle Scholar
  17. 17.
    Chan B, Auyeung J, Rudan JF, Ellis RE, Kunz M. Intraoperative application of hand-held structured light scanning: a feasibility study. Int J CARS. 2016;11:1101–8. https://doi.org/10.1007/s11548-016-1381-8.CrossRefGoogle Scholar
  18. 18.
    Hajeer MY, Millett DT, Ayoub AF, Siebert JP. Applications of 3D imaging in orthodontics: part II. J Orthod. 2004;31(2):154–62. https://doi.org/10.1179/146531204225020472.CrossRefPubMedGoogle Scholar
  19. 19.
    Burke PH, Beard FH. Stereophotogrammetry of the face: a preliminary investigation into the accuracy of a simplified system evolved for contour mapping by photography. Am J Orthod. 1967;53(10):769–82.CrossRefGoogle Scholar
  20. 20.
    Schendel SA, Jacobson R, Khalessi S. 3-Dimensional facial simulation in orthognathic surgery: is it accurate? J Oral Maxillofac Surg. 2013;71:1406–14. https://doi.org/10.1016/j.joms.2013.02.010.CrossRefPubMedGoogle Scholar
  21. 21.
    Khambay B, Nebel JC, Bowman J, Walker F, Hadley DM, Ayoub A. A pilot study: 3D stereophotogrammetric image superimposition onto 3D CT scan images – the future of orthognathic surgery. Int J Orthodon Orthognath Surg. 2002;17:331–41.Google Scholar
  22. 22.
    Bugaighis I, Mattick CR, Orth F, Tiddeman B, Hobson R. 3D facial morphometry in children with oral clefts. Cleft Palate Craniofac J. 2014;51(4):452–61. https://doi.org/10.1597/12-217.CrossRefPubMedGoogle Scholar
  23. 23.
    Mailey B, Baker JL, Hosseini A, Collins J, Suliman A, Wallace AM, Cohen SR. Evaluation of facial volume changes after rejuvenation surgery using a 3-dimensional camera. Aesthet Surg J. 2016;36(4):379–87. https://doi.org/10.1093/asj/sjv226.CrossRefPubMedGoogle Scholar
  24. 24.
    Knoops PGM, Beaumont CAA, Borghi A, Rodriguez-Florez N, Breakey RWF, Rodgers W, et al. Comparison of three-dimensional scanner systems for craniomaxillofacial imaging. J Plast Reconstr Aesthet Surg. 2017;70:441–9. https://doi.org/10.1016/j.bjps.2016.12.015.CrossRefPubMedGoogle Scholar
  25. 25.
    Tzou CHJ, Artner NM, Pona I, Hold A, Placheta E, Kropatsch WG, Frey M. Comparison of three-dimensional surface-imaging systems. J Plast Reconstr Aesth Surg. 2014;67:489–97. https://doi.org/10.1016/j.bjps.2014.01.003.CrossRefGoogle Scholar
  26. 26.
    Maal TJ, Van Loon B, Plooij JM, Rangel F, Ettema AM, Borstlap WA, Berge SJ. Registration of 3-dimensional facial photographs for clinical use. J Oral Maxillofac Surg. 2010;68:2391–401. https://doi.org/10.1016/j.joms.2009.10.017.CrossRefPubMedGoogle Scholar
  27. 27.
    Heike CL, Upson K, Stuhaug E, Weinberg SM. 3D digital stereophotogrammetry: a practical guide to facial image acquisition. Head Face Med. 2010;6:18. https://doi.org/10.1186/1746-160X-6-18.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ferrario VF, Sforza C, Poggio CE, Serrao G. Facial three-dimensional morphometry. Am J Orthod Dentofacial Orthop. 1996;109(1):86–93.CrossRefGoogle Scholar
  29. 29.
    Webber RL, Horton RA, Tyndall DA, Ludlow JB. Tuned-aperture computed tomography (TACT). Theory and application for three-dimensional dentoalveolar imaging. Dentomaxillofac Radiol. 1997;26(1):53–62. https://doi.org/10.1038/sj.dmfr.4600201.CrossRefPubMedGoogle Scholar
  30. 30.
    Shah N, Bansal N, Logani A. Recent advances in imaging technologies in dentistry. World J Radiol. 2014;6(10):794–807. https://doi.org/10.4329/wjr.v6.i10.794.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nair MK, Seyedain A, Webber RL, Nair UP, Piesco NP, Agarwal S, et al. Fractal analyses of osseous healing using tuned aperture computed tomography images. Eur Radiol. 2001;11(8):1510–5. https://doi.org/10.1007/s003300000773.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Nair MK, Nair UP, Seyedain A, Gassner R, Piesco N, Mooney M, et al. Correlation of tuned aperture computed tomography with conventional computed tomography for evaluation of osseous healing in calvarial defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(2):267–73. https://doi.org/10.1016/j.tripleo.2006.02.006.CrossRefPubMedGoogle Scholar
  33. 33.
    Nair MK, Seyedain A, Agarwall S, Webber RL, Nair UP, Piesco NP, et al. Tuned aperture computed tomography to evaluate osseous healing. J Dent Res. 2001;80(7):1621–4. https://doi.org/10.1177/00220345010800070501.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nair MK, Tyndall DA, Ludlow JB, May K. Tuned aperture computed tomography and detection of recurrent caries. Caries Res. 1998;32:23–30. https://doi.org/10.1159/000016426.CrossRefPubMedGoogle Scholar
  35. 35.
    Nance R, Tyndall D, Levin LG, Trope M. Identification of root canals in molars by tuned-aperture computed tomography. Int Endod J. 2000;33(4):392–6. https://doi.org/10.1046/j.1365-2591.2000.00330.x.CrossRefPubMedGoogle Scholar
  36. 36.
    Liang H, Tyndall DA, Ludlow JB, Lang LA. Cross-sectional presurgical implant imaging using tuned aperture computed tomography. Dentomaxillofac Radiol. 1999;28(4):232–7. https://doi.org/10.1038/sj/dmfr/4600451.CrossRefPubMedGoogle Scholar
  37. 37.
    Ferreira LA, Grossmann E, Januzzi E, de Paula MVQ, Carvalho ACP. Diagnosis of temporomandibular joint disorders: indication of imaging exams. Braz J Otorhinolaryngol. 2016;82:341–52. https://doi.org/10.1016/j.bjorl.2015.06.010.CrossRefPubMedGoogle Scholar
  38. 38.
    Navallas M, Inarejos EJ, Iglesias E, Cho Lee GY, Rodriguez N, Anton J. MR imaging of the temporomandibular joint in juvenile idiopathic arthritis: technique and findings. Radiographics. 2017;37:595–612. https://doi.org/10.1148/rg.2017160078.CrossRefPubMedGoogle Scholar
  39. 39.
    Hechler BL, Phero JA, Van Mater H, Matthews NS. Ultrasound versus magnetic resonance imaging of the temporomandibular joint in juvenile idiopathic arthritis: a systematic review. Int J Oral Maxillofac Surg. 2018;47:83–9. https://doi.org/10.1016/j.ijom.2017.07.014.CrossRefPubMedGoogle Scholar
  40. 40.
    Karatas O, Toy E. Three-dimensional imaging techniques: a literature review. Eur J Dent. 2014;8(1):132. https://doi.org/10.4103/1305-7456.126269.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Battal B, Kocaoglu M, Bulakbasi N, Husmen G, Sanal HT, Tayfun C. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol. 2011;84:758–65. https://doi.org/10.1259/bjr/66206791.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    The Johns Hopkins University. Arteriogram. http://www.hopkinsmedicine.org/healthlibrary/conditions/radiology/arteriogram_85,p01274/. Accessed 5 Jun 2017.
  43. 43.
    Herzig R, Burval S, Krupka B, Vlachova I, Urbanek K, Mares J. Comparison of ultrasonography, CT angiography, and digital subtraction angiography in severe carotid stenosis. Eur J Neurol. 2004;11:774–81. https://doi.org/10.1111/j.1468-1331.2004.00878.x.CrossRefPubMedGoogle Scholar
  44. 44.
    Newton C. Comparing CTA and MRA. Diagn Invasive Cardiol. 2010;50(3):22–3.Google Scholar
  45. 45.
    Hartung MP, Grist TM, Francois CJ. Magnetic resonance angiography: current status and future directions. J Cardiovasc Magn Reson. 2011;13:19. https://doi.org/10.1186/1532-429X-13-19.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hassanien OA, Ghieda UE, Younes RL, Shaban EA. Facial vascular anomalies; MRI and TRICKS-MR angiography diagnostic approach. Egypt J Radiol Nucl Med. 2017;48:885–95. https://doi.org/10.1016/j.ejrnm.2017.08.013.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Oral and Maxillofacial SurgeryUniversity of Oklahoma Health Science CenterOklahoma CityUSA

Personalised recommendations