Advertisement

The Alveolar Bone and Its Limits

  • Alejandro Romero-Delmastro
  • G. Fräns Currier
  • Onur KadiogluEmail author
Chapter

Abstract

The alveolar bone has always been a factor in the decision-making process of the orthodontists, and there has recently been an increasing interest in the dental profession for evaluating the effects of orthodontic treatment on the alveolar bone. Both medical computed tomography (CT) and cone-beam computed tomography (CBCT) have made such evaluations possible under circumstances where direct observation was not practical or feasible.

CBCTs provide accurate imaging of the alveolar bone and other anatomical structures surrounding the teeth. Unlike on conventional 2D radiographs, both the facial and the lingual surfaces of the alveolar bone can be observed and measured on CBCT images. This yields much needed data for clinical in-vivo studies that intend to evaluate alveolar bone changes during and after orthodontic treatment. Several studies have been completed assessing bone changes both in the anterior and posterior segments, as well as in the presence or absence of expansion devices, and in the presence or absence of extractions. Along with these studies, methods have been developed for the purpose of measuring facial and lingual alveolar bone.

Keywords

Cone-beam computed tomography (CBCT) CBCT accuracy Alveolar bone levels Tooth-based superimposition RPE Extraction vs non-extraction 

References

  1. 1.
    ADA. 2013. ADA clinical practice guidelines, ADA Center for Evidence-Based Dentistry. Chicago, ILGoogle Scholar
  2. 2.
    Harrel WE. Three-dimensional diagnosis and treatment planning: the use of 3-D facial imaging and 3-D Cone beam CT in orthodontics and dentistry. Oral presentation. AAO annual session. Chicago. 2011.Google Scholar
  3. 3.
    Kau CH, Richmond S, Palomo JM, Hans MG. Three-dimensional cone beam computerized tomography in orthodontics. J Orthod. 2005;32:282–93.CrossRefGoogle Scholar
  4. 4.
    De Vos W, Casselman J, Swennen GR. Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral Maxillofac Surg. 2009;38:609–25.CrossRefGoogle Scholar
  5. 5.
    Sukovic P, Brooks S, Perez L, Clinthorne N. DentoCATTM – a novel design of a cone-beam CT scanner for dentomaxillofacial imaging: introduction and preliminary results. Proceedings of the 15th international congress and exhibition on computer assisted radiology and surgery. 2001.Google Scholar
  6. 6.
    Sukovic P. Cone beam computed tomography in craniofacial imaging. Orthod Craniofac Res. 2003;6(Suppl 1):31–6. discussion 179-82CrossRefGoogle Scholar
  7. 7.
    Timock AM, Cook V, Mcdonald T, Leo MC, Crowe J, Benninger BL, Covell DA Jr. Accuracy and reliability of buccal bone height and thickness measurements from cone-beam computed tomography imaging. Am J Orthod Dentofac Orthop. 2011;140:734–44.CrossRefGoogle Scholar
  8. 8.
    Mah J, Hatcher D. Current status and future needs in craniofacial imaging. Orthod Craniofac Res. 2003;6:10–6.CrossRefGoogle Scholar
  9. 9.
    Farman AG. Fundamentals of image acquisition and processing in the digital era. Orthod Craniofac Res. 2003;6(Suppl 1):17–22.CrossRefGoogle Scholar
  10. 10.
    Ballanti F, Lione R, Fanucci E, Franchi L, Baccetti T, Cozza P. Immediate and post-retention effects of rapid maxillary expansion investigated by computed tomography in growing patients. Angle Orthod. 2009;79:24–9.CrossRefGoogle Scholar
  11. 11.
    Grauer D, Cevidanes LS, Proffit WR. Working with DICOM craniofacial images. Am J Orthod Dentofac Orthop. 2009;136:460–70.CrossRefGoogle Scholar
  12. 12.
    Hatcher DC, Aboudara CL. Diagnosis goes digital. Am J Orthod Dentofac Orthop. 2004;125:512–5.CrossRefGoogle Scholar
  13. 13.
    Farman AG, Scarfe WC. Development of imaging selection criteria and procedures should precede cephalometric assessment with cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2006;130:257–65.CrossRefGoogle Scholar
  14. 14.
    Scarfe WC, Farman AG, Sukovic P. Clinical applications of cone-beam computed tomography in dental practice. J Can Dent Assoc. 2006;72:75–80.PubMedGoogle Scholar
  15. 15.
    Swennen GR, Schutyser F. Three-dimensional cephalometry: spiral multi-slice vs cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2006;130:410–6.CrossRefGoogle Scholar
  16. 16.
    Mah JK, Yi L, Huang RC, Choo H. Advanced applications of cone beam computed tomography in orthodontics. Semin Orthod. 2011;17:57–71.CrossRefGoogle Scholar
  17. 17.
    Lund H, Grondahl K, Grondahl HG. Cone beam computed tomography evaluations of marginal alveolar bone before and after orthodontic treatment combined with premolar extractions. Eur J Oral Sci. 2012;120:201–11.CrossRefGoogle Scholar
  18. 18.
    Schulze D, Heiland M, Thurmann H, Adam G. Radiation exposure during midfacial imaging using 4- and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofac Radiol. 2004;33:83–6.CrossRefGoogle Scholar
  19. 19.
    Kiefer H, Lambrecht JT, Roth J. Dose exposure from analog and digital full mouth radiography and panoramic radiography. Schweiz Monatsschr Zahnmed. 2004;114:687–93.PubMedGoogle Scholar
  20. 20.
    Mah JK. X-ray imaging and oral healthcare. 2006. http://www.orbitimaging.com/PDF/Xrays-OralHealthcarePatientAAO.pdf. Accessed 20 Mar 2012.
  21. 21.
    Cevidanes LH, Oliveira AE, Grauer D, Styner M, Proffit WR. Clinical application of 3D imaging for assessment of treatment outcomes. Semin Orthod. 2011;17:72–80.CrossRefGoogle Scholar
  22. 22.
    Suomalainen A. Cone beam computed tomography in oral radiology. Doctoral dissertation, University of Helsinki. 2010.Google Scholar
  23. 23.
    Ludlow JB, Davies-Ludlow LE, White SC. Patient risk related to common dental radiographic examinations: the impact of 2007 international commission on radiological protection recommendations regarding dose calculation. J Am Dent Assoc. 2008;139:1237–43.CrossRefGoogle Scholar
  24. 24.
    Bayome M, Park JH, Kook Y-A. Computed tomography: new research. Hauppauge, NY: Nova Science Publisher; 2013.Google Scholar
  25. 25.
    Kusnoto B, Kaur P, Salem A, Zhang Z, Galang-Boquiren MT, Viana G, Evans CA, Manasse R, Monahan R, Begole E, Abood A, Han X, Sidky E, Pan X. Implementation of ultra-low-dose CBCT for routine 2D orthodontic diagnostic radiographs: cephalometric landmark identification and image quality assessment. Semin Orthod. 2015;21:233–47.CrossRefGoogle Scholar
  26. 26.
    Gamache C, English JD, Salas-Lopez AM, Rong J, Akyalcin S. Assessment of image quality in maxillofacial cone-beam computed tomography imaging. Semin Orthod. 2015;21:248–53.CrossRefGoogle Scholar
  27. 27.
    Molen AD. The 3D orthodontist: the modern orthodontist’s source for information on 3D technologies. 2011. http://www.3DOrthodontist.com/. Accessed 20 Mar 2012.
  28. 28.
    Pan F, Kau CH. The anatomical evaluation of the dental arches using cone beam computed tomography – a pilot investigation of the availability of bone for placement of mini-implants in class I patients. IFMBE proceedings, 2009, Munich. pp. 2273–2275.Google Scholar
  29. 29.
    Loubele M, Van Assche N, Carpentier K, Maes F, Jacobs R, Van Steenberghe D, Suetens P. Comparative localized linear accuracy of small-field cone-beam CT and multislice CT for alveolar bone measurements. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105:512–8.CrossRefGoogle Scholar
  30. 30.
    Creed B, Kau CH, English JD, Xia JJ, Lee RP. A comparison of the accuracy of linear measurements obtained from cone beam computerized tomography images and digital models. Semin Orthod. 2011;17:49–56.CrossRefGoogle Scholar
  31. 31.
    Molen AD. Considerations in the use of cone-beam computed tomography for buccal bone measurements. Am J Orthod Dentofac Orthop. 2010;137:S130–5.CrossRefGoogle Scholar
  32. 32.
    Lund H, Grondahl K, Grondahl HG. Cone beam computed tomography for assessment of root length and marginal bone level during orthodontic treatment. Angle Orthod. 2010;80:466–73.CrossRefGoogle Scholar
  33. 33.
    Romero-Delmastro A, Kadioglu O, Currier GF, Cook T. Digital tooth-based superimposition method for assessment of alveolar bone levels on cone-beam computed tomography images. Am J Orthod Dentofac Orthop. 2014;146:255–63.CrossRefGoogle Scholar
  34. 34.
    Kobayashi K, Shimoda S, Nakagawa Y, Yamamoto A. Accuracy in measurement of distance using limited cone-beam computerized tomography. Int J Oral Maxillofac Implants. 2004;19:228–31.Google Scholar
  35. 35.
    Baumgaertel S, Palomo JM, Palomo L, Hans MG. Reliability and accuracy of cone-beam computed tomography dental measurements. Am J Orthod Dentofac Orthop. 2009;136:19–25. discussion 25–8CrossRefGoogle Scholar
  36. 36.
    Lascala CA, Panella J, Marques MM. Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillofac Radiol. 2004;33:291–4.CrossRefGoogle Scholar
  37. 37.
    Berco M, Rigali PH Jr, Miner RM, Deluca S, Anderson NK, Will LA. Accuracy and reliability of linear cephalometric measurements from cone-beam computed tomography scans of a dry human skull. Am J Orthod Dentofac Orthop. 2009;136(17):e1–9. discussion 17–8Google Scholar
  38. 38.
    Bagis N, Kolsuz ME, Kursun S, Orhan K. Comparison of intraoral radiography and cone-beam computed tomography for the detection of periodontal defects: an in vitro study. BMC Oral Health. 2015;15:64.CrossRefGoogle Scholar
  39. 39.
    Misch KA, Yi ES, Sarment DP. Accuracy of cone beam computed tomography for periodontal defect measurements. J Periodontol. 2006;77:1261–6.CrossRefGoogle Scholar
  40. 40.
    Covell DA. Assessing alveolar bone height and thickness using cone beam computed tomography: are the looks deceiving? AAO annual session, San Diego, 2017.Google Scholar
  41. 41.
    Hamada Y, Kondoh T, Noguchi K, Iino M, Isono H, Ishii H, Mishima A, Kobayashi K, Seto K. Application of limited cone beam computed tomography to clinical assessment of alveolar bone grafting: a preliminary report. Cleft Palate Craniofac J. 2005;42:128–37.CrossRefGoogle Scholar
  42. 42.
    Gribel BF, Gribel MN, Frazao DC, Mcnamara JA Jr, Manzi FR. Accuracy and reliability of craniometric measurements on lateral cephalometry and 3D measurements on CBCT scans. Angle Orthod. 2011;81:26–35.CrossRefGoogle Scholar
  43. 43.
    Lamichane M, Anderson NK, Rigali PH, Seldin EB, Will LA. Accuracy of reconstructed images from cone-beam computed tomography scans. Am J Orthod Dentofac Orthop. 2009;136:156.e1–6. discussion 156–7Google Scholar
  44. 44.
    Moerenhout BA, Gelaude F, Swennen GR, Casselman JW, Van Der Sloten J, Mommaerts MY. Accuracy and repeatability of cone-beam computed tomography (CBCT) measurements used in the determination of facial indices in the laboratory setup. J Craniomaxillofac Surg. 2009;37:18–23.CrossRefGoogle Scholar
  45. 45.
    Lagravere MO, Gordon JM, Guedes IH, Flores-Mir C, Carey JP, Heo G, Major PW. Reliability of traditional cephalometric landmarks as seen in three-dimensional analysis in maxillary expansion treatments. Angle Orthod. 2009;79:1047–56.CrossRefGoogle Scholar
  46. 46.
    De Oliveira AE, Cevidanes LH, Phillips C, Motta A, Burke B, Tyndall D. Observer reliability of three-dimensional cephalometric landmark identification on cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:256–65.CrossRefGoogle Scholar
  47. 47.
    Ballrick JW, Palomo JM, Ruch E, Amberman BD, Hans MG. Image distortion and spatial resolution of a commercially available cone-beam computed tomography machine. Am J Orthod Dentofac Orthop. 2008;134:573–82.CrossRefGoogle Scholar
  48. 48.
    Cevidanes LH, Bailey LJ, Tucker GR Jr, Styner MA, Mol A, Phillips CL, Proffit WR, Turvey T. Superimposition of 3D cone-beam CT models of orthognathic surgery patients. Dentomaxillofac Radiol. 2005;34:369–75.CrossRefGoogle Scholar
  49. 49.
    Kumar V, Ludlow JB, Mol A, Cevidanes L. Comparison of conventional and cone beam CT synthesized cephalograms. Dentomaxillofac Radiol. 2007;36:263–9.CrossRefGoogle Scholar
  50. 50.
    Westerlund A, Oikimoui C, Ransjö M, Ekestubbe A, Bresin A, Lund H. Cone-beam computed tomographic evaluation of the long-term effects of orthodontic retainers on marginal bone levels. Am J Orthod Dentofac Orthop. 2017;151:74–81.CrossRefGoogle Scholar
  51. 51.
    Patcas R, Müller L, Ullrich O, Peltomäki T. Accuracy of cone-beam computed tomography at different resolutions assessed on the bony covering of the mandibular anterior teeth. Am J Orthod Dentofac Orthop. 2012;141:41–50.CrossRefGoogle Scholar
  52. 52.
    Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging. 2004;17:205–16.CrossRefGoogle Scholar
  53. 53.
    Osirix. 2012. http://www.OsiriX-viewer.com/. Accessed 10 May 2012.
  54. 54.
    Garib DG, Henriques JF, Janson G, De Freitas MR, Fernandes AY. Periodontal effects of rapid maxillary expansion with tooth-tissue-borne and tooth-borne expanders: a computed tomography evaluation. Am J Orthod Dentofac Orthop. 2006;129:749–58.CrossRefGoogle Scholar
  55. 55.
    Roberts WE, Simmons KE, Garetto LP, Decastro RA. Bone physiology and metabolism in dental implantology: risk factors for osteoporosis and other metabolic bone diseases. Implant Dent. 1992;1:11–21.CrossRefGoogle Scholar
  56. 56.
    Zachrisson BU. Cause and prevention of injuries to teeth and supporting structures during orthodontic treatment. Am J Orthod. 1976;69:285–300.CrossRefGoogle Scholar
  57. 57.
    Rungcharassaeng K, Caruso JM, Kan JYK, Kim J, Taylor G. Factors affecting buccal bone changes of maxillary posterior teeth after rapid maxillary expansion. Am J Orthod Dentofac Orthop. 2007;132:428.e1–8.CrossRefGoogle Scholar
  58. 58.
    Nguyen B, Kadioglu O, Currier GF, Olsen J. Cone beam computed tomography evaluation after palatal expansion and orthodontics. J World Fed Orthod. 2013;2:e9–e13.CrossRefGoogle Scholar
  59. 59.
    Hsu JT, Chang HW, Huang HL, Yu JH, Li YF, Tu MG. Bone density changes around teeth during orthodontic treatment. Clin Oral Investig. 2011;15:511–9.CrossRefGoogle Scholar
  60. 60.
    Cook T, Currier F, Kadioglu O, Griffin T. Comparison of the anterior alveolar bony changes of moderately crowded cases treated either with extraction or non-extraction orthodontic treatment. Semin Orthod. 2015;21:283–90.CrossRefGoogle Scholar
  61. 61.
    Roberts WE. Bone physiology, metabolism, and biomechanics in orthodontic practice. In: Graber TM, Vanarsdall RL, KWL V, editors. Orthodontics current principles and techniques, vol. 4. St. Louis, MO: Elsevier Mosby; 2005.Google Scholar
  62. 62.
    Melsen B. Biological reaction of alveolar bone to orthodontic tooth movement. Angle Orthod. 1999;69:151–8.PubMedGoogle Scholar
  63. 63.
    Starnbach H, Bayne D, Cleall J, Subtelny JD. Facioskeletal and dental changes resulting from rapid maxillary expansion. Angle Orthod. 1966;36:152–64.PubMedGoogle Scholar
  64. 64.
    Silva MG, Wolf U, Heinicke F, Bumann A, Visser H, Hirsch E. Cone-beam computed tomography for routine orthodontic treatment planning: a radiation dose evaluation. Am J Orthod Dentofac Orthop. 2008;133:640.e1–5.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alejandro Romero-Delmastro
    • 1
  • G. Fräns Currier
    • 1
  • Onur Kadioglu
    • 1
    Email author
  1. 1.Division of Orthodontics, Department of Developmental SciencesUniversity of Oklahoma Health Sciences Center College of DentistryOklahoma CityUSA

Personalised recommendations