Hematopoietic Growth Factors

  • Juan Jose Pérez-RuixoEmail author


Hematopoiesis is an intricate, well-regulated, and homeostatic multistep process that allows immature precursor cells in the bone marrow to proliferate, differentiate, mature, and become functional blood cells that transport oxygen and carbon dioxide; contribute to host immunity; and facilitate blood clotting. In the early 1900s, scientists recognized the presence of circulating factors that regulate hematopoiesis. Scientific progress was slow until it became possible to purify sufficient quantities to evaluate the characteristics and biologic potential of the isolated materials. The introduction of recombinant DNA technology triggered a flurry of studies and an information explosion, which confirmed hematopoiesis is mediated by a series of hematopoietic growth factors (HGF) that acts individually and in various combinations involving complex feedback mechanisms. Today, many HGF have been isolated; some have been studied extensively, and a few have been manufactured for clinical use. In this chapter, the HGF molecular structure and mechanism of action, its main pharmacokinetic and pharmacodynamic properties, as well as the clinical indications and main toxicities are described.


Hematopoietic growth factors Erythropoietin Granulocyte colony-stimulating factor (G-CSF) Granulocyte-macrophage colony-stimulating factor (GM-CSF) Stem cell factor (SCF) Thrombopoietin (TPO) 



Parts of this chapter are updated versions of previously published portions of several other chapters and/or review manuscripts, that include:

  1. 1.

    Heatherington AC (2003) Clinical pharmacokinetic properties of rHuEPO: a review. In: Molineux G, Foote MA, Elliott S (eds) Erythropoietins and erythropoiesis: molecular, cellular, preclinical, and clinical biology. Birkhauser, Basel, pp 87–112

  2. 2.

    Elliot S, Heatherington AC, Foote MA (2004) Erythropoietic factors: clinical pharmacology and pharmacokinetics. In: Morstyn G, Foote MA, and Lieschke GJ (eds) Hematopoietic growths factors in oncology. Humana Press, Totowa, pp 97–123

  3. 3.

    Foote AN (2008) Hematopoietic growth factors. In: Crommelin DJA, Sindelar RD, Meibohm B (eds) Pharmaceutical biotechnology. Fundamentals and applications, 3rd edn. Informa Healthcare USA, New York, pp 225–242

  4. 4.

    Doshi S, Perez-Ruixo JJ, Jang GR, Chow A, Elliot S (2008) Pharmacocinétique de les agents stimulant l’érythropoïèse. In: Rossert J, Casadevall N, Gisselbrecht C (eds) Les agents stimulant l’érythropoïèse. Paris, France

  5. 5.

    Doshi S, Perez-Ruixo JJ, Jang GR, Chow AT (2009) Pharmacokinetics of erythropoiesis-stimulating agents. In: Molineux G, Foote MA, Elliott S (eds) Erythropoietins and erythropoiesis: molecular, cellular, preclinical, and clinical biology. 2nd edn. Birkhäuser Verlag AG, Basel, pp 195–224.

  6. 6.

    Doshi S, Krzyzanski W, Yue S, Elliott S, Chow A, Pérez-Ruixo JJ. Clinical pharmacokinetics and pharmacodynamics of erythropoiesis-stimulating agents. Clin Pharmacokinet. 2013 Dec;52(12):1063-83.



  1. Aapro MS, Bohlius J, Cameron DA et al (2011) 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur J Cancer 47:8–32CrossRefGoogle Scholar
  2. Adamson JW, Eschbach JW (1990) Treatment of the anemia of chronic renal failure with recombinant human erythropoietin. Annu Rev Med 41:349–360CrossRefGoogle Scholar
  3. Agoram B, Sutjandra L, Sullivan JT (2007) Population pharmacokinetics of darbepoetin alfa in healthy subjects. Br J Clin Pharmacol 63:41–52CrossRefGoogle Scholar
  4. Agoram B, Aoki K, Doshi S et al (2009) Investigation of the effects of altered receptor binding activity on the clearance of erythropoiesis-stimulating proteins: nonerythropoietin receptor-mediated pathways may play a major role. J Pharm Sci 98:2198–2211CrossRefGoogle Scholar
  5. Ait-Oudhia S, Vermeulen A, Krzyzanski W (2011) Non-linear mixed effect modeling of the time-variant disposition of erythropoietin in anemic cancer patients. Biopharm Drug Dispos 32:1–15CrossRefGoogle Scholar
  6. Armitage JO (1998) Emerging applications of recombinant human granulocyte colony-stimulating factor. Blood 92:4491–4508PubMedGoogle Scholar
  7. Bennett CL, Silver SM, Djulbegovic B et al (2008) Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. JAMA 299:914–924CrossRefGoogle Scholar
  8. Bohlius J, Schmidlin K, Brillant C et al (2009) Recombinant human erythropoiesis-stimulating agents and mortality in patients with cancer: a meta-analysis of randomised trials. Lancet 373:1532–1542CrossRefGoogle Scholar
  9. Bron D, Meuleman N, Mascaux C (2001) Biological basis of anemia. Semin Oncol 28:1–6CrossRefGoogle Scholar
  10. Broudy VC, Lin NL (2004) AMG531 stimulates megakaryopoiesis in vitro by binding to Mpl. Cytokine 25:52–60CrossRefGoogle Scholar
  11. Bussel JB, Kuter DJ, George JN et al (2006) AMG 531, a thrombopoiesis-stimulating protein, for chronic ITP. N Engl J Med 355:1672–1681CrossRefGoogle Scholar
  12. Chanu P, Gieschke R, Charoin JE, Pannier A, Reigner B (2010) Population pharmacokinetic – pharmacodynamic model for a C.E.R.A. in both ESA-naive and ESA-treated chronic kidney disease patients with renal anemia. J Clin Pharmacol 50:507–520CrossRefGoogle Scholar
  13. Chapel S, Veng-Pedersen P, Hohl RJ, Schmidt RL, McGuire EM, Widness JA (2001) Changes in erythropoietin pharmacokinetics following busulfan-induced bone marrow ablation in sheep: evidence for bone marrow as a major erythropoietin elimination pathway. J Pharmacol Exp Ther 298:820–824PubMedGoogle Scholar
  14. Cheung WK, Goon BL, Guilfoyle MC, Wacholtz MC (1998) Pharmacokinetics and pharmacodynamics of recombinant human erythropoietin after single and multiple subcutaneous doses to healthy subjects. Clin Pharmacol Ther 64:412–423CrossRefGoogle Scholar
  15. Cheung WK, Minton N, Gunawardena K (2001) Pharmacokinetics and pharmacodynamics of epoetin alfa once weekly and three times weekly. Eur J Clin Pharmacol 57:411–418CrossRefGoogle Scholar
  16. Crawford J, Armitage J, Balducci L et al (2009) Myeloid growth factors. J Natl Compr Cancer Netw 7:64–83CrossRefGoogle Scholar
  17. Deicher R, Horl WH (2004) Differentiating factors between erythropoiesis-stimulating agents: a guide to selection for anemia of chronic kidney disease. Drugs 64:499–509CrossRefGoogle Scholar
  18. Doshi S, Chow A, Pérez Ruixo JJ (2010) Exposure-response modeling of darbepoetin alfa in anemic patients with chronic kidney disease not receiving dialysis. J Clin Pharmacol 50(9 Suppl):75S–90SCrossRefGoogle Scholar
  19. Egrie JC, Browne JK (2001) Development and characterization of novel erythropoiesis stimulating protein (NESP). Br J Cancer 84(Suppl 1):3–10CrossRefGoogle Scholar
  20. Egrie JC, Strickland TW, Lane J et al (1986) Characterization and biological effects of recombinant human erythropoietin. Immunobiology 72:213–224CrossRefGoogle Scholar
  21. Egrie JC, Dwyer E, Browne JK, Hitz A, Lykos MA (2003) Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol 31:290–299CrossRefGoogle Scholar
  22. Elliott S, Lorenzini T, Asher S et al (2003) Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat Biotechnol 21:414–421CrossRefGoogle Scholar
  23. Elliott S, Heatherington AC, Foote MA (2004a) Erythropoietic factors. In: Morstyn G, Foote MA, Lieschke GJ (eds) Hematopoietic growth factors in oncology: basic science and clinical therapeutics. Humana Press Inc, Totowa, pp 97–123CrossRefGoogle Scholar
  24. Elliott S, Egrie J, Browne J et al (2004b) Control of rHuEPO biological activity: the role of carbohydrate. Exp Hematol 32:1146–1155CrossRefGoogle Scholar
  25. Fisher JW (2003) Erythropoietin: physiology and pharmacology update. Exp Biol Med 228:1–14CrossRefGoogle Scholar
  26. Gascon P, Pirker R, Del Mastro L, Durrwell L (2010) Effects of CERA (continuous erythropoietin receptor activator) in patients with advanced non-small-cell lung cancer (NSCLC) receiving chemotherapy: results of a phase II study. Ann Oncol 21:2029–2039CrossRefGoogle Scholar
  27. Glaspy J, Henry D, Patel R et al (2005) The effects of chemotherapy on endogenous erythropoietin levels and the pharmacokinetics and erythropoietic response of darbepoetin alfa: a randomised clinical trial of synchronous versus asynchronous dosing of darbepoetin alfa. Eur J Cancer 41:1140–1149CrossRefGoogle Scholar
  28. Glaspy J, Crawford J, Vansteenkiste J et al (2010) Erythropoiesis stimulating agents in oncology: a study-level meta-analysis of survival and other safety outcomes. Br J Cancer 102:301–315CrossRefGoogle Scholar
  29. Green MD, Koelbl H, Baselga J et al (2003) A randomized double-blind multicenter phase III study of fixed-dose single-administration pegfilgrastim versus daily filgrastim in patients receiving myelosuppressive chemotherapy. Ann Oncol 14:29–35CrossRefGoogle Scholar
  30. Gross AW, Lodish HF (2006) Cellular trafficking and degradation of erythropoietin and novel erythropoiesis stimulating protein (NESP). J Biol Chem 281:2024–2032CrossRefGoogle Scholar
  31. Halstenson CE, Macres M, Katz SA et al (1991) Comparative pharmacokinetics and pharmacodynamics of epoetin alfa and epoetin beta. Clin Pharmacol Ther 50:702–712CrossRefGoogle Scholar
  32. Heatherington AC (2003) Clinical pharmacokinetic properties of rHuEPO: a review. In: Molineux G, Foote MA, Elliott S (eds) Erythropoietins and erythropoiesis: molecular, cellular, preclinical, and clinical biology. Birkhauser, Basel, pp 87–112Google Scholar
  33. Jarsch M, Brandt M, Lanzendörfer M, Haselbeck A (2008) Comparative erythropoietin receptor binding kinetics of C.E.R.A. and epoetin-beta determined by surface plasmon resonance and competition binding assay. Pharmacology 81:63–69CrossRefGoogle Scholar
  34. Jelkmann W (1992) Erythropoietin: structure, control of production, and function. Physiol Rev 72:449–489CrossRefGoogle Scholar
  35. Jelkmann W (2000) Use of recombinant human erythropoietin as an antianemic and performance enhancing drug. Curr Pharm Biotechnol 1:11–31CrossRefGoogle Scholar
  36. Jensen JD, Jensen LW, Madsen JK (1994) The pharmacokinetics of recombinant human erythropoietin after subcutaneous injection at different sites. Eur J Clin Pharmacol 46:333–337CrossRefGoogle Scholar
  37. Jungers PY, Robino C, Choukroun G, Nguyen-Khoa T, Massy ZA, Jungers P (2002) Incidence of anaemia, and use of Epoetin therapy in pre-dialysis patients: a prospective study in 403 patients. Nephrol Dial Transplant 17:1621–1627CrossRefGoogle Scholar
  38. Kakkar T, Sung C, Gibiansky L et al (2011) Population PK and IgE pharmacodynamic analysis of a fully human monoclonal antibody against IL4 receptor. Pharm Res 28:2530–2542CrossRefGoogle Scholar
  39. Kantarjian H, Fenaux P, Sekeres MA et al (2010a) Safety and efficacy of romiplostim in patients with lower-risk myelodysplastic syndrome and thrombocytopenia. J Clin Oncol 28:437–444CrossRefGoogle Scholar
  40. Kantarjian HM, Giles FJ, Greenberg PL et al (2010b) Phase 2 study of romiplostim in patients with low- or intermediate-risk myelodysplastic syndrome receiving azacitidine therapy. Blood 116:3163–3170CrossRefGoogle Scholar
  41. Kato A, Hishida A, Kumagai H, Furuya R, Nakajima T, Honda N (1994) Erythropoietin production in patients with chronic renal failure. Ren Fail 16:645–651CrossRefGoogle Scholar
  42. Kaufman JS, Reda DJ, Fye CL et al (1998) Subcutaneous compared with intravenous epoetin in patients receiving hemodialysis. Department of Veterans Affairs Cooperative Study Group on erythropoietin in hemodialysis patients. N Engl J Med 339:578–583CrossRefGoogle Scholar
  43. Keating GM (2011) Lenograstim: a review of its use in chemotherapy-induced neutropenia, for acceleration of neutrophil recovery following haematopoietic stem cell transplantation and in peripheral blood stem cell mobilization. Drugs 71:679–707CrossRefGoogle Scholar
  44. Keating GM (2012) Romiplostim. Drugs 72:415–435CrossRefGoogle Scholar
  45. Krzyzanski W, Jusko WJ, Wacholtz MC, Minton N, Cheung WK (2005) Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after multiple subcutaneous doses in healthy subjects. Eur J Pharm Sci 26:295–306CrossRefGoogle Scholar
  46. Kuter DJ, Hunt P, Sheridan W, Zucker-Franklin D (eds) (1997) Thrombopoiesis and thrombopoeitin. Humana Press Inc, Totowa, p 412Google Scholar
  47. Langley KE (2004) Stem cell factor and its receptor, c-Kit. In: Morstyn G, Foote MA, Lieschke GJ (eds) Hematopoietic growth factors in oncology. Humana Press Inc, Totowa, pp 153–184CrossRefGoogle Scholar
  48. Li J, Yang C, Xia Y et al (2001) Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood 98:3241–3248CrossRefGoogle Scholar
  49. Ludwig H, Crawford J, Osterborg A et al (2009) Pooled analysis of individual patient-level data from all randomized, double-blind, placebo controlled trials of darbepoetin alfa in the treatment of patients with chemotherapy-induced anemia. J Clin Oncol 27:2838–2847CrossRefGoogle Scholar
  50. Macdougall IC (2005) CERA (continuous erythropoietin receptor activator): a new erythropoiesis-stimulating agent for the treatment of anemia. Curr Hematol Rep 4:436–440PubMedGoogle Scholar
  51. Macdougall IC, Gray SJ, Elston O et al (1999) Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J Am Soc Nephrol 10:2392–2395PubMedGoogle Scholar
  52. McLennan DN, Porter CJ, Edwards GA, Heatherington AC, Martin SW, Charman SA (2006) The absorption of darbepoetin alfa occurs predominantly via the lymphatics following subcutaneous administration to sheep. Pharm Res 23:2060–2066CrossRefGoogle Scholar
  53. McMahon FG, Vargas R, Ryan M et al (1990) Pharmacokinetics and effects of recombinant human erythropoietin after intravenous and subcutaneous injections in healthy volunteers. Blood 76:1718–1722PubMedGoogle Scholar
  54. Melhem M, Delor I, Pérez-Ruixo JJ et al (2018) Pharmacokinetic-pharmacodynamic modelling of neutrophil response to G-CSF in healthy subjects and patients with chemotherapy-induced neutropenia. Br J Clin Pharmacol 84:911–925CrossRefGoogle Scholar
  55. Miller CB, Jones RJ, Piantadosi S, Abeloff MD, Spivak JL (1990) Decreased erythropoietin response in patients with the anemia of cancer. N Engl J Med 322:1689–1692CrossRefGoogle Scholar
  56. Nissenson AR, Swan SK, Lindberg JS et al (2002) Randomized, controlled trial of darbepoetin alfa for the treatment of anemia in hemodialysis patients. Am J Kidney Dis 40:110–118CrossRefGoogle Scholar
  57. Olsson-Gisleskog P, Jacqmin P, Perez-Ruixo JJ (2007) Population pharmacokinetics meta-analysis of recombinant human erythropoietin in healthy subjects. Clin Pharmacokinet 46:159–173CrossRefGoogle Scholar
  58. Perez-Ruixo JJ, Krzyzanski W, Bouman-Thio E et al (2009) Pharmacokinetics and pharmacodynamics of the erythropoietin mimetibody construct CNTO 528 in healthy subjects. Clin Pharmacokinet 48:601–613CrossRefGoogle Scholar
  59. Perez-Ruixo JJ, Green B, Doshi S, Wang YM, Mould DR (2012) Romiplostim dose-response in patients with immune thrombocytopenia. J Clin Pharmacol 52:1540–1551CrossRefGoogle Scholar
  60. Petrelli F, Borgonovo K, Cabiddu M, Lonati V, Barni S (2012) Addition of iron to erythropoiesis-stimulating agents in cancer patients: a meta-analysis of randomized trials. J Cancer Res Clin Oncol 138:179–187CrossRefGoogle Scholar
  61. Piron M, Loo M, Gothot A, Tassin F, Fillet G, Beguin Y (2001) Cessation of intensive treatment with recombinant human erythropoietin is followed by secondary anemia. Blood 97:442–448CrossRefGoogle Scholar
  62. Porter CJ, Charman SA (2000) Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci 89:297–310CrossRefGoogle Scholar
  63. Ramakrishnan R, Cheung WK, Wacholtz MC, Minton N, Jusko WJ (2004) Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after single and multiple doses in healthy volunteers. J Clin Pharmacol 44:991–1002CrossRefGoogle Scholar
  64. Rizzo JD, Somerfield MR, Hagerty KL et al (2008) Use of epoetin and darbepoetin in patients with cancer: 2007 American Society of Clinical Oncology/American Society of Hematology clinical practice guideline update. J Clin Oncol 26:132–149CrossRefGoogle Scholar
  65. Samtani MN, Perez-Ruixo JJ, Brown KH et al (2009) Pharmacokinetic and pharmacodynamic modeling of pegylated thrombopoietin mimetic peptide (PEG-TPOm) after single intravenous dose administration in healthy subjects. J Clin Pharmacol 49:336–350CrossRefGoogle Scholar
  66. Schellekens H, Moors E (2010) Clinical comparability and European biosimilar regulations. Nat Biotechnol 28:28–31CrossRefGoogle Scholar
  67. Schellekens H, Smolen JS, Dicato M, Rifkin RM (2016) Safety and efficacy of biosimilars in oncology. Lancet Oncol 17:e502–e509CrossRefGoogle Scholar
  68. Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94:1626–1635CrossRefGoogle Scholar
  69. Spivak JL (1998) The biology and clinical applications of recombinant erythropoietin. Semin Oncol 25(3 suppl 7):7–11PubMedGoogle Scholar
  70. Supersaxo A, Hein WR, Steffen H (1990) Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res 7:167–169CrossRefGoogle Scholar
  71. Sutjandra L, Rodriguez RD, Doshi S et al (2011) Population pharmacokinetic meta-analysis of denosumab in healthy subjects and postmenopausal women with osteopenia or osteoporosis. Clin Pharmacokinet 50:793–807CrossRefGoogle Scholar
  72. Tonelli M, Hemmelgarn B, Reiman T et al (2009) Benefits and harms of erythropoiesis-stimulating agents for anemia related to cancer: a meta-analysis. CMAJ 180:E62–E71CrossRefGoogle Scholar
  73. Uehlinger DE, Goth FA, Sheiner LB (1992) A pharmacodynamic model of erythropoietin therapy for uremic anemia. Clin Pharmacol Ther 51:76–89CrossRefGoogle Scholar
  74. Vansteenkiste J, Pirker R, Massuti B et al (2002) Double-blind, placebo-controlled, randomized phase III trial of darbepoetin alfa in lung cancer patients receiving chemotherapy. J Natl Cancer Inst 94:1211–1220CrossRefGoogle Scholar
  75. Walrafen P, Verdier F, Kadri Z, Chrétien S, Lacombe C, Mayeux P (2005) Both proteasomes and lysosomes degrade the activated erythropoietin receptor. Blood 105:600–608CrossRefGoogle Scholar
  76. Wang YM, Krzyzanski W, Doshi S, Xiao JJ, Pérez-Ruixo JJ, Chow AT (2010) Pharmacodynamics-mediated drug disposition (PDMDD) and precursor pool lifespan model for single dose of romiplostim in healthy subjects. AAPS J 12:729–740CrossRefGoogle Scholar
  77. Wang YM, Sloey B, Wong T, Khandelwal P, Melara R, Sun YN (2011) Investigation of the pharmacokinetics of romiplostim in rodents with a focus on the clearance mechanism. Pharm Res 28:1931–1938CrossRefGoogle Scholar
  78. Wide L, Bengtsson C, Birgegard G (1989) Circadian rhythm of erythropoietin in human serum. Br J Haematol 72:85–90CrossRefGoogle Scholar
  79. Yan X, Lowe PJ, Fink M, Berghout A, Balser S, Krzyzanski W (2012) Population pharmacokinetic and pharmacodynamic model-based comparability assessment of a recombinant human epoetin alfa and the biosimilar HX575. J Clin Pharmacol 52:1624–1644CrossRefGoogle Scholar
  80. Yan X, Krzyzanski W (2013) Quantitative assessment of minimal effective concentration of erythropoiesis-stimulating agents. CPT Pharmacometrics Syst Pharmacol 2:e62. CrossRefPubMedPubMedCentralGoogle Scholar
  81. Yang BB, Kido A (2011) Pharmacokinetics and pharmacodynamics of pegfilgrastim. Clin Pharmacokinet 50:295–306CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Clinical PharmacologyJanssen Research & DevelopmentBeerseBelgium

Personalised recommendations