Advanced Therapies: Clinical, Non-clinical and Quality Considerations

  • Karin H. HoogendoornEmail author


Cell therapy, tissue engineering, and gene therapy products, together called “advanced therapy medicinal products” (ATMPs), represent a heterogeneous group of innovative biopharmaceuticals. ATMPs are based on viable cells, tissue, or genetic material. In this chapter, after a brief introduction, first different classification systems of these products are discussed, illustrated with representative examples of products in clinical development or commercially available. Next, the challenges associated with successful pharmaceutical development, manufacturing, and testing of these products are covered. Finally, regulatory aspects are dealt with.


Cell-based medicinal product Tissue engineered product Ex-vivo gene therapy Clinical considerations Non-clinical considerations Production and testing considerations Regulatory considerations 


  1. Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293CrossRefGoogle Scholar
  2. Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, Ding S (2011) Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9:113–118CrossRefGoogle Scholar
  3. Ankrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32(3):252–260CrossRefGoogle Scholar
  4. Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319CrossRefGoogle Scholar
  5. Bravery CA (2015) Do human leukocyte antigen-typed cellular therapeutics based on induced pluripotent stem cells make commercial sense? Stem Cells Dev 24(1):1–10CrossRefGoogle Scholar
  6. Bravery CA, Carmen J, Fong T, Oprea W, Hoogendoorn KH, Woda J, Burger SR, Rowley JA, Bonyhadi ML, van’t Hof W (2013) Potency assay development for cellular therapy products: an ISCT review of the requirements and experiences in the industry. Cytotherapy 15:9–19CrossRefGoogle Scholar
  7. Burridge PW, Keller G, Gold JD, Wu JC (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10:16–28CrossRefGoogle Scholar
  8. Cadena-Herrera D, Esparza-De Lara JE, Ramírez-Ibañez ND, López-Morales CA, Pérez NO, Flores-Ortiz LF, Medina-Rivero E (2015) Validation of three viable-cell counting methods: manual, semi-automated, and automated. Biotechnol Rep 7:9–16CrossRefGoogle Scholar
  9. Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66CrossRefGoogle Scholar
  10. Chin MH, Pellegrini M, Plath K, Lowry WE (2010) Molecular analyses of human induced pluripotent stem cells and embryonic stem cells. Cell Stem Cell 7:263–269CrossRefGoogle Scholar
  11. Consentius C, Reinke P, Volk H-D (2015) Immunogenicity of allogeneic mesenchymal stromal cells: what has been seen in vitro and in vivo? Regen Med 10(3):305–315CrossRefGoogle Scholar
  12. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156CrossRefGoogle Scholar
  13. Fesnak AD, June CH, Levine BL (2016) Engineered T cells: the promise and challenges of cancer immunotherapy. Nature 16:566–581Google Scholar
  14. Gombold J, Peden K, Gavin D, Wei Z, Baradaran K, Mire-Sluis A, Schenerman M (2006a) Lot release and characterization testing of live-virus-based vaccines and gene therapy products, part 1: factors influencing assay choices - WCBP CMC Forum. Bioprocess Int 46–54, April 2006Google Scholar
  15. Gombold J, Peden K, Gavin D, Wei Z, Baradaran K, Mire-Sluis A, Schenerman M (2006b) Lot release and characterization testing of live-virus-based vaccines and gene therapy products, part 2: case studies and discussion - WCBP CMC Forum Bioprocess Int 56–65, May 2006Google Scholar
  16. Han DW, Tapia N, Hermann A, Hemmer K, Hoing S, Arauzo-Bravo MJ, Zaehres H, Wu G, Frank S, Moritz S, Greber B, Yang JH, Lee HT, Schwamborn JC, Storch A, Scholer HR (2012) Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10:465–472CrossRefGoogle Scholar
  17. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923CrossRefGoogle Scholar
  18. Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D, Hallett PJ, Osborn T, Jaenisch R, Isacson O (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A 107:15921–15926CrossRefGoogle Scholar
  19. Hassan W, Dong Y, Wang W (2013) Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid. Stem Cell Res Ther 4(32):1–11Google Scholar
  20. Heathman T, Nienow AW, McCall MJ, Coppman K, Kara B, Hewitt CJ (2015) The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen Med 10(1):49–64CrossRefGoogle Scholar
  21. Herberts CA, Kwa MS, Hermsen HP (2011) Risk factors in the development of stem cell therapy. J Transl Med 9:29CrossRefGoogle Scholar
  22. Huang P, Zhang L, Gao Y, He Z, Yao D, Wu Z, Cen J, Chen X, Liu C, Hu Y, Lai D, Hu Z, Chen L, Zhang Y, Cheng X, Ma X, Pan G, Wang X, Hui L (2011) Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 14:370–384CrossRefGoogle Scholar
  23. Ilic D, Devito L, Miere C, Codognotto S (2015) Human embryonic and induced pluripotent stem cells in clinical trials. Br Med Bull 116:19–27PubMedGoogle Scholar
  24. Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199CrossRefGoogle Scholar
  25. Kean TJ, Lin P, Caplan AI, Dennis JE (2013) MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int 2013:732742CrossRefGoogle Scholar
  26. Keller G (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19:1129–1155CrossRefGoogle Scholar
  27. Kim YJ, Matsunaga YT (2017) Thermo-responsive polymers and their application as smart biomaterials. J Mater Chem B 5:4307–4321CrossRefGoogle Scholar
  28. Kimbrel EA, Lanza R (2015) Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov 14:681–692CrossRefGoogle Scholar
  29. Lander AD, Kimble J, Clevers H, Fuchs E, Montarras D, Buckingham M, Calof AL, Trumpp A, Oskarsson T (2012) What does the concept of the stem cell niche really mean today? BMC Biol 10:19CrossRefGoogle Scholar
  30. Landgren H, Curtis MA (2010) Locating and labeling neural stem cells in the brain. J Cell Physiol 226:1–7CrossRefGoogle Scholar
  31. Leibacher J, Henschler R (2016) Biodistribution, migration and homing of systematically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 7:7:1–12Google Scholar
  32. Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, Thomson JA (2006) Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24:568–574CrossRefGoogle Scholar
  33. Levine BL, Miskin J, Wonnacott K, Keir C (2017) Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev 4:92–101CrossRefGoogle Scholar
  34. Lui KO, Waldmann H, Fairchild PJ (2009) Embryonic stem cells: overcoming the immunological barriers to cell replacement therapy. Curr Stem Cell Res Ther 4:70–80CrossRefGoogle Scholar
  35. Martin GR (1981) Isolation of a pluripotent ell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad SCi USA 78:7634–7638CrossRefGoogle Scholar
  36. Morenweiser R (2005) Downstream processing of viral vectors and vaccines. Gene Ther 12:S103–S110CrossRefGoogle Scholar
  37. Mount NM, Ward SJ, Kefalas P, Hyllner J (2015) Cell-based therapy technology classifications and translational challenges. Philos Trans R Soc Lond B Biol Sci 370:1–16CrossRefGoogle Scholar
  38. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785CrossRefGoogle Scholar
  39. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680CrossRefGoogle Scholar
  40. Pedersen RA, Macetti V, Mendjan S (2012) Synthetic organs for regenerative medicine. Cell Stem Cell 10:646–647CrossRefGoogle Scholar
  41. Pollock K, Stroemer P, Patel S, Stevanato L, Hope A, Miljan E, Dong Z, Hodges H, Price J, Sinden JD (2006) A conditionally immortal clonal stem cell line from human cortical neuroepithelium for the treatment of ischemic stroke. Exp Neurol 199:143–155CrossRefGoogle Scholar
  42. Santos GW (1983) History of bone marrow transplantation. Clin Haematol 12:611–639CrossRefGoogle Scholar
  43. Sasai Y (2013) Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 12:520–530CrossRefGoogle Scholar
  44. Sayed N, Liu C, Wu JC (2016) Translation of human-induced pluripotent stem cells. J Am Coll Cardiol 67(18):2161–2176CrossRefGoogle Scholar
  45. Sayed N, Wong WT, Ospino F, Meng S, Lee J, Jha A, Dexheimer P, Aronow BJ, Cooke JP (2015) Transdifferentiation of human fibroblasts to endothelial cells: role of innate immunity. Circulation 131:300–9CrossRefGoogle Scholar
  46. Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079CrossRefGoogle Scholar
  47. Scott CT, DeFrancesco L (2016) Gene therapy’s out-of-body experience. Nat Biotechnol 34(6):600–607CrossRefGoogle Scholar
  48. Sharpe M, Mount N (2015) genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech 8:337–350CrossRefGoogle Scholar
  49. Smith BD, Grande DA (2015) The current state of scaffolds for musculoskeletal regenerative applications. Nat Rev Rheumatol 11:213–222CrossRefGoogle Scholar
  50. Smith JA, Bravery CA, Hollander G, Brindley DA (2015) Regenerative medicine regulation: cell therapy, gene therapy and tissue engineering. In: Fundamentals of EU regulatory affairs, 7th edn. RAPS, RockvilleGoogle Scholar
  51. Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25:829–848CrossRefGoogle Scholar
  52. Stevanato L, Corteling RL, Stroemer P, Hope A, Heward J, Miljan EA, Sinden JD (2009) c-MycERTAM transgene silencing in a genetically modified human neural stem cell line implanted into MCAo rodent brain. BMC Neurosci 10:86CrossRefGoogle Scholar
  53. Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105:2631–2639CrossRefGoogle Scholar
  54. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefGoogle Scholar
  55. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872CrossRefGoogle Scholar
  56. Tchieu J, Kuoy E, Chin MH, Trinh H, Patterson M, Sherman SP, Aimiuwu O, Lindgren A, Hakimian S, Zack JA, Clark AT, Pyle AD, Lowry WE, Plath K (2010) Female human iPSCs retain an inactive X chromosome. Cell Stem Cell 7:329–342CrossRefGoogle Scholar
  57. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory P et al (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370:901–910CrossRefGoogle Scholar
  58. Thier M, Worsdorfer P, Lakes YB, Gorris R, Herms S, Opitz T, Seiferling D, Quandel T, Hoffmann P, Nothen MM, Brustle O, Edenhofer F (2012) Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10:473–479CrossRefGoogle Scholar
  59. Thomas RJ, Anderson D, Chandra A, Smith NM, Young LE, Williams D, Denning C (2009) Automated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotechnol Bioeng 102:1636–1644CrossRefGoogle Scholar
  60. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefGoogle Scholar
  61. Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17:11–22CrossRefGoogle Scholar
  62. Vestergaard HT, D’Apote L, Schneider CK, Herberts C (2013) The evolution of nonclinical regulatory science: advanced therapy medicinal products as a paradigm. Mol Ther 21(9):644–1647CrossRefGoogle Scholar
  63. Wegst UGK, Bai H, Saiz E, Tomsia AP, Richie RO (2015) Bioinspired structural materials. Nat Mater 14:23–36CrossRefGoogle Scholar
  64. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A 105:5856–5861CrossRefGoogle Scholar
  65. Wilmut I, Beaujean N, de Sousa PA, Dinnyes A, King TJ, Paterson LA, Wells DN, Young LE (2002) Somatic cell nuclear transfer. Nature 419:583–586CrossRefGoogle Scholar
  66. Wilmut I, Sullivan G, Taylor J (2009) A decade of progress since the birth of Dolly. Reprod Fertil Dev 21:95–100CrossRefGoogle Scholar
  67. Wright JF (2018) Manufacturing and characterization of AAV-based vectors for use in clinical studies. Gene Ther 15:840–848CrossRefGoogle Scholar
  68. Yang CS, Li Z, Rana TM (2011) microRNAs modulate iPS cell generation. RNA 17:1451–1460CrossRefGoogle Scholar
  69. Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292CrossRefGoogle Scholar
  70. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523CrossRefGoogle Scholar
  71. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920CrossRefGoogle Scholar
  72. Yuan X, Wan H, Zhao X, Zhu S, Zhou Q, Ding S (2011) Brief report: combined chemical treatment enables Oct4-induced reprogramming from mouse embryonic fibroblasts. Stem Cells 29:549–553CrossRefGoogle Scholar
  73. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660CrossRefGoogle Scholar
  74. Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215CrossRefGoogle Scholar

Suggested Reading

  1. BSI PAS 83:2012 (2012) Developing human cells for clinical applications in the Euopean Union and the United States of America – guide. Publicly Available Specification PAS83:2012, The British Standards Institution, ISBN 978 0 580 71052 0Google Scholar
  2. BSI PAS 84:2012 (2012) Cell therapy and regenerative medicine – glossary. Publicly Available Specification PAS84:2012, The British Standards Institution, ISBN 978 0 580 74904 9Google Scholar
  3. BSI PAS 93:2011 (2011) Characterization of human cells for clinical applications – guide. Publicly Available Specification PAS93:2011, The British Standards Institution, ISBN 978 0 580 69850 7Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Leiden University Medical Center, Hospital Pharmacy, Interdivisional GMP FacilityLeidenThe Netherlands

Personalised recommendations