Digital Image Forensics Technique for Copy-Move Forgery Detection Using DoG and ORB

  • Patrick NiyishakaEmail author
  • Chakravarthy Bhagvati
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11114)


Copy–Move forgery or Cloning is image tampering or alteration by copying one area in an image and pasting it into another area of the same image. Due to the availability of powerful image editing software, the process of malicious manipulation, editing and creating fake images has been tremendously simple. Thus, there is a need of robust PBIF (Passive–Blind Image Forensics) techniques to validate the authenticity of digital images. In this paper, CMFD (Copy–Move Forgery Detection) using DoG (Difference of Gaussian) blob detector to detect regions in image, with rotation invariant and resistant to noise feature detection technique called ORB (Oriented Fast and Rotated Brief) is implemented, evaluated on different standard datasets and experimental results are presented.




  1. 1.
    Dhiman, N., Kumar, R.: Classification of copy move forgery and normal images by ORB features and SVM classifier. In: ICITSEM 2017, pp. 146–155 (2017)Google Scholar
  2. 2.
    Malviya, A.V., Ladhake, S.A.: Pixel based image forensic technique for copy-move forgery detection using auto color correlogram. Procedia Comput. Sci. 79, 383–390 (2016)CrossRefGoogle Scholar
  3. 3.
    Lee, J.-C.: Copy-move image forgery detection based on Gabor magnitude. J. Vis. Commun. Image Representation 31, 320–334 (2015)CrossRefGoogle Scholar
  4. 4.
    Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., Serra, G.: A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans. Inf. Forensics Secur. 6(3), 1099–1110 (2011)CrossRefGoogle Scholar
  5. 5.
    Christlein, V., Riess, C., Jordan, J., Riess, C., Angelopoulou, E.: An evaluation of popular copy-move forgery detection approaches. IEEE Trans. Inf. Forensics Secur. 7(6), 1841–1854 (2012)CrossRefGoogle Scholar
  6. 6.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: ICCV, pp. 2564–2571 (2011)Google Scholar
  7. 7.
    AlSawadi, M., Ghulam, M., Hussain, M., Bebis, G.: Copy-move image forgery detection using local binary pattern and neighborhood clustering. In: EMS (2013)Google Scholar
  8. 8.
    Popescu, A., Farid, H.: Exposing digital forgeries by detecting duplicated image regions. Dartmouth College, Computer Science, Technical report, TR 2004–515 (2004)Google Scholar
  9. 9.
    Fridrich, J., Soukal, D., Lukas, J.: Detection of copy-move forgery in digital images. In: Digital Forensic Research Workshop, Cleveland, OH, pp. 19–23 (2003)Google Scholar
  10. 10.
    Jing, L., Shao, C.: Image copy-move forgery detecting based on local invariant feature. J. Multimed. 7(1), 90–97 (2012)Google Scholar
  11. 11.
    Shivakumar, B.L., SanthoshBaboo, S.: Detection of region duplication forgery in digital images using SURF. IJCSI Int. J. Comput. Sci. Issues 8(4), 199–205 (2011)Google Scholar
  12. 12.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ng, T.-T., Chang, S.-F., Lin, C.-Y., Sun, Q.: Passive blind image forensics. In: Multimedia Security Technologies for Digital Rights Management, pp. 383–412 (2006)CrossRefGoogle Scholar
  14. 14.
    Gupta, C.S.: A review on splicing image forgery detection techniques. IJCSITS, 6(2), 262–269, (2016)Google Scholar
  15. 15.
    Mushtaq, S., Hussain, A.: Digital image forgeries and passive image authentication techniques: a survey. Int. J. Adv. Sci. Technol. 73, 15–32 (2014)CrossRefGoogle Scholar
  16. 16.
    Rathod, G., Chodankar, S., Deshmukh, R., Shinde, P., Pattanaik, S.P.: Image forgery detection on cut-paste and copy-move forgeries. Int. J. Adv. Electron. Comput. Sci. 3(6) (2016). ISSN: 2393–2835Google Scholar
  17. 17.
    Redi, J., Taktak, W., Dugelay, J.: Digital image forensics: a booklet for beginners. Multimed. Tools Appl. 51(1), 133–162 (2011)CrossRefGoogle Scholar
  18. 18.
    Lindeberg, T.: Detecting salient blob-like image structures and their scales with a scale-space primal sketch: a method for focus-of-attention. Int. J. Comput. Vis. 11(3), 283–318 (1993)CrossRefGoogle Scholar
  19. 19.
    Calonder, M., Lepetit, V., özuysal, M., Trzcinski, T., Strecha, C., Fua, P.: BRIEF: computing a local binary descriptor very fast. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1281–1298 (2012)CrossRefGoogle Scholar
  20. 20.
    Hassaballah, M., Abdelmgeid, A.A., Alshazly, H.A.: Image features detection, description and matching. In: Awad, A.I., Hassaballah, M. (eds.) Image Feature Detectors and Descriptors. SCI, vol. 630, pp. 11–45. Springer, Cham (2016). Scholar
  21. 21.
    Audi, A., Pierrot-Deseilligny, M., Meynardand, C., Thom, C.: Implementation of an IMU aided image stacking algorithm in a digital camera for unmanned aerial vehicles. Sensors 17(7), 1646 (2017)CrossRefGoogle Scholar
  22. 22.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). Scholar
  23. 23.
    Kong, H., Akakin, H.C., Sarma, S.E.: A generalized Laplacian of Gaussian filter for blob detection and its applications. IEEE Trans. Cybern. 43(6), 1719–1733 (2013)CrossRefGoogle Scholar
  24. 24.
    Tralic, D., Zupancic, I., Grgic, S., Grgic, M.: CoMoFoD - new database for copy-move forgery detection. In: Proceedings of 55th International Symposium ELMAR-2013, pp. 49–54 (2013)Google Scholar
  25. 25.
    Irwin, S., Gary, F.: A 3 x 3 Isotropic Gradient Operator for Image Processing. The Stanford Artificial Intelligence Project, pp. 271–272 (1968)Google Scholar
  26. 26.
    Vincent, O.R., Folorunso, O.: A descriptive algorithm for Sobel image edge detection. In: Proceedings of Informing Science & IT Education Conference (InSITE) (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of HyderabadHyderabadIndia

Personalised recommendations