Improving RGB Descriptors Using Depth Cues

  • Maciej StefańczykEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11114)


Geometrical distortions are tackled in different way in multiple keypoint detection and feature extraction algorithms. However, those are implemented as an integral part of the solution, making it impossible to use the same distortion removal method in other solutions. To the best of authors knowledge, there are no universal methods of distortion removal, that can be used as an intermediate step, between keypoint detection and feature extraction. Creating that kind of algorithm, instead of development of yet another ‘robust descriptor’, will enable seamless integration in existing applications, and, possibly, will increase object recognition success rate, independent of the selected keypoint detector/descriptor pair.


RGB-D Descriptors Matching Data fusion 



This work is funded by the National Science Centre, Preludium grant no. UMO-2017/25/N/ST6/02358.


  1. 1.
    Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517. IEEE (2012)Google Scholar
  2. 2.
    Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 214–227. Springer, Heidelberg (2012). Scholar
  3. 3.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  4. 4.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). Scholar
  5. 5.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, p. 50. Citeseer (1988)Google Scholar
  6. 6.
    Kraft, M., Nowicki, M., Penne, R., Schmidt, A., Skrzypczyński, P.: Efficient RGB-D data processing for feature-based self-localization of mobile robots. Int. J. Appl. Math. Comput. Sci. 26(1), 63–79 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2548–2555. IEEE (2011)Google Scholar
  8. 8.
    Levi, G., Hassner, T.: LATCH: learned arrangements of three patch codes. In: Winter Conference on Applications of Computer Vision (WACV). IEEE (2016)Google Scholar
  9. 9.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Marton, Z.c., Pangercic, D., Blodow, N., Kleinehellefort, J., Beetz, M.: General 3D modelling of novel objects from a single view. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3700–3705. IEEE (2010)Google Scholar
  11. 11.
    Nascimento, E.R., Oliveira, G.L., Campos, M.F., Vieira, A.W., Schwartz, W.R.: BRAND: A robust appearance and depth descriptor for RGB-D images. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1720–1726. IEEE (2012)Google Scholar
  12. 12.
    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). Scholar
  13. 13.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)Google Scholar
  14. 14.
    Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 3212–3217. IEEE (2009)Google Scholar
  15. 15.
    Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3D recognition and pose using the viewpoint feature histogram. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2155–2162. IEEE (2010)Google Scholar
  16. 16.
    Rusu, R.B., Marton, Z.C., Blodow, N., Beetz, M.: Persistent point feature histograms for 3D point clouds. In: Proceedings of 10th International Conference on Intelligent Autonomous Systems (IAS-2010), Baden-Baden, Germany, pp. 119–128 (2008)Google Scholar
  17. 17.
    Shi, J., Tomasi, C.: Good features to track. In: 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings CVPR 1994, pp. 593–600. IEEE (1994)Google Scholar
  18. 18.
    Sipiran, I., Bustos, B.: Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. Vis. Comput. 27(11), 963–976 (2011)CrossRefGoogle Scholar
  19. 19.
    Steder, B., Rusu, R.B., Konolige, K., Burgard, W.: NARF: 3D range image features for object recognition. In: Workshop on Defining and Solving Realistic Perception Problems in Personal Robotics at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 44 (2010)Google Scholar
  20. 20.
    Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010). Scholar
  21. 21.
    Willis, A.R., Brink, K.M.: iGRaND: an invariant frame for RGBD sensor feature detection and descriptor extraction with applications. In: SPIE Commercial + Scientific Sensing and Imaging, International Society for Optics and Photonics, p. 98670P (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Control and Computation EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations