Advertisement

Quality Evaluation of 3D Printed Surfaces Based on HOG Features

  • Piotr Lech
  • Jarosław Fastowicz
  • Krzysztof Okarma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11114)

Abstract

The main purpose of the visual quality assessment of 3D prints is the detection of surface distortions which can be made using various approaches. Nevertheless, a reliable classification of 3D printed samples into low and high quality ones can be troublesome, especially assuming the unknown color of the filament. Such a classification can be efficiently conducted using the approach based on the Histogram of Oriented Gradients (HOG) proposed in this paper. Obtained results are very promising and allow proper classification for the most of the tested samples, especially for some of the most typical distortions.

Keywords

3D prints Quality assessment HOG features 

References

  1. 1.
    Chauhan, V., Surgenor, B.: A comparative study of machine vision based methods for fault detection in an automated assembly machine. Procedia Manuf. 1, 416–428 (2015).  https://doi.org/10.1016/j.promfg.2015.09.051CrossRefGoogle Scholar
  2. 2.
    Chauhan, V., Surgenor, B.: Fault detection and classification in automated assembly machines using machine vision. Int. J. Adv. Manuf. Technol. 90(9), 2491–2512 (2017).  https://doi.org/10.1007/s00170-016-9581-5CrossRefGoogle Scholar
  3. 3.
    Cheng, Y., Jafari, M.A.: Vision-based online process control in manufacturing applications. IEEE Transa. Autom. Sci. Eng. 5(1), 140–153 (2008).  https://doi.org/10.1109/TASE.2007.912058CrossRefGoogle Scholar
  4. 4.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893, June 2005.  https://doi.org/10.1109/CVPR.2005.177
  5. 5.
    Fang, T., Jafari, M.A., Bakhadyrov, I., Safari, A., Danforth, S., Langrana, N.: Online defect detection in layered manufacturing using process signature. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, San Diego, California, USA, vol. 5, pp. 4373–4378, October 1998.  https://doi.org/10.1109/ICSMC.1998.727536
  6. 6.
    Fastowicz, J., Okarma, K.: Texture based quality assessment of 3D prints for different lighting conditions. In: Chmielewski, L.J., Datta, A., Kozera, R., Wojciechowski, K. (eds.) ICCVG 2016. LNCS, vol. 9972, pp. 17–28. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46418-3_2CrossRefGoogle Scholar
  7. 7.
    Fastowicz, J., Okarma, K.: Entropy based surface quality assessment of 3D prints. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds.) CSOC 2017. AISC, vol. 573, pp. 404–413. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57261-1_40CrossRefGoogle Scholar
  8. 8.
    Gardner, M.R., et al.: In situ process monitoring in selective laser sintering using optical coherence tomography. Optical Engineering 57, 1–5 (2018).  https://doi.org/10.1117/1.OE.57.4.041407CrossRefGoogle Scholar
  9. 9.
    Lane, B., Moylan, S., Whitenton, E.P., Ma, L.: Thermographic measurements of the commercial laser powder bed fusion process at NIST. Rapid Prototyp. J. 22(5), 778–787 (2016).  https://doi.org/10.1108/RPJ-11-2015-0161CrossRefGoogle Scholar
  10. 10.
    Okarma, K., Fastowicz, J.: No-reference quality assessment of 3D prints based on the GLCM analysis. In: Proceedings of the 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 788–793 (2016).  https://doi.org/10.1109/MMAR.2016.7575237
  11. 11.
    Okarma, K., Fastowicz, J.: Quality assessment of 3D prints based on feature similarity metrics. In: Choraś, R.S. (ed.) IP&C 2016. AISC, vol. 525, pp. 104–111. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-47274-4_12CrossRefGoogle Scholar
  12. 12.
    Okarma, K., Fastowicz, J., Tecław, M.: Application of structural similarity based metrics for quality assessment of 3D prints. In: Chmielewski, L.J., Datta, A., Kozera, R., Wojciechowski, K. (eds.) ICCVG 2016. LNCS, vol. 9972, pp. 244–252. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46418-3_22CrossRefGoogle Scholar
  13. 13.
    Straub, J.: Initial work on the characterization of additive manufacturing (3D printing) using software image analysis. Machines 3(2), 55–71 (2015).  https://doi.org/10.3390/machines3020055CrossRefGoogle Scholar
  14. 14.
    Straub, J.: 3D printing cybersecurity: detecting and preventing attacks that seek to weaken a printed object by changing fill level. In: Proceedings of SPIE – Dimensional Optical Metrology and Inspection for Practical Applications VI, Anaheim, California, USA, vol. 10220, pp. 102200O-1–102200O-15, June 2017.  https://doi.org/10.1117/12.2264575
  15. 15.
    Straub, J.: An approach to detecting deliberately introduced defects and micro-defects in 3D printed objects. In: Proceedings of SPIE - Pattern Recognition and Tracking XXVII, Anaheim, California, USA, vol. 10203, pp. 102030L-1–102030L-14, June 2017.  https://doi.org/10.1117/12.2264588
  16. 16.
    Straub, J.: Identifying positioning-based attacks against 3D printed objects and the 3D printing process. In: Proceedings of SPIE - Pattern Recognition and Tracking XXVII, Anaheim, California, USA, vol. 10203, pp. 1020304-1–1020304-13, June 2017.  https://doi.org/10.1117/12.2264671
  17. 17.
    Straub, J.: Physical security and cyber security issues and human error prevention for 3D printed objects: detecting the use of an incorrect printing material. In: Proceedings of SPIE - Dimensional Optical Metrology and Inspection for Practical Applications VI, Anaheim, California, USA, vol. 10220, pp. 102200K-1-102200K–16, June 2017.  https://doi.org/10.1117/12.2264578
  18. 18.
    Szkilnyk, G., Hughes, K., Surgenor, B.: Vision based fault detection of automated assembly equipment. In: Proceedings of the ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, Parts A and B, Washington, DC, USA, vol. 3, pp. 691–697, August 2011.  https://doi.org/10.1115/DETC2011-48493
  19. 19.
    Tourloukis, G., Stoyanov, S., Tilford, T., Bailey, C.: Data driven approach to quality assessment of 3D printed electronic products. In: Proceedings of the 38th International Spring Seminar on Electronics Technology (ISSE), Eger, Hungary, pp. 300–305, May 2015.  https://doi.org/10.1109/ISSE.2015.7248010

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Signal Processing and Multimedia Engineering, Faculty of Electrical EngineeringWest Pomeranian University of Technology, SzczecinSzczecinPoland

Personalised recommendations