Advertisement

Selective and Simple Graph Structures for Better Description of Local Point-Based Image Features

  • Grzegorz Kurzejamski
  • Marcin Iwanowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11114)

Abstract

The paper presents simple graph features based on a well-known image keypoints. We discuss the extraction method and geometrical properties that can be used. Chosen methods are tested in KNN tasks for almost 1000 object classes. The approach addresses problems in applications that cannot use learning methods explicitly, as real-time tracking, chosen object detection scenarios and structure from motion. Results imply that the idea is worth further research for chosen systems.

References

  1. 1.
    Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2012, pp. 510–517, June 2012Google Scholar
  2. 2.
    Azad, P., Asfour, T., Dillmann, R.: Combining harris interest points and the SIFT descriptor for fast scale-invariant object recognition. In: IEEE/RSJ International Conference on Intelligent Robots and Systems 2009. IROS 2009, pp. 4275–4280, October 2009Google Scholar
  3. 3.
    Bai, L., Hancock, E.R.: Fast depth-based subgraph kernels for unattributed graphs. Pattern Recogn. 50, 233–245 (2016).  https://doi.org/10.1016/j.patcog.2015.08.006CrossRefGoogle Scholar
  4. 4.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008). Similarity Matching in Computer Vision and MultimediaCrossRefGoogle Scholar
  5. 5.
    Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J.: Learning graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1048–1058 (2009).  https://doi.org/10.1109/Ftpami.2009.28
  6. 6.
    Cantoni, V., Cinque, L., Guerra, C., Levialdi, S., Lombardi, L.: 2-D object recognition by multiscale tree matching. Pattern Recognit. 31(10), 1443–1454 (1998)CrossRefGoogle Scholar
  7. 7.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005, CVPR 2005, vol. 1, pp. 886–893, June 2005Google Scholar
  8. 8.
    Dean, T., Ruzon, M., Segal, M., Shlens, J., Vijayanarasimhan, S., Yagnik, J.: Fast, accurate detection of 100,000 object classes on a single machine. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA (2013)Google Scholar
  9. 9.
    Demirci, M.F., Shokoufandeh, A., Keselman, Y., Bretzner, L., Dickinson, S.: Object recognition as many-to-many feature matching. Int. J. Comput. Vis. 69(2), 203–222 (2006).  https://doi.org/10.1007/Fs11263-006-6993-y
  10. 10.
    Duchenne, O., Bach, F., Kweon, I.S., Ponce, J.: A tensor-based algorithm for high-order graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2383–2395 (2011).  https://doi.org/10.1109/Ftpami.2011.110
  11. 11.
    Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  12. 12.
    Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.: The amsterdam library of object images, January 2005.  https://doi.org/10.1023/B:VISI.0000042993.50813.60CrossRefGoogle Scholar
  13. 13.
    Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C.: Matchnet: unifying feature and metric learning for patch-based matching. In: CVPR (2015)Google Scholar
  14. 14.
    Kurzejamski, G., Zawistowski, J., Sarwas, G.: A framework for robust object multi-detection with a vote aggregation and a cascade filtering. CoRR abs/1512.08648 (2015). http://arxiv.org/abs/1512.08648
  15. 15.
    Kurzejamski, G., Zawistowski, J., Sarwas, G.: Robust method of vote aggregation and proposition verification for invariant local features. In: VISAPP 2015 - Proceedings of the International Conference on Computer Vision Theory and Applications, pp. 593–600, March 2015Google Scholar
  16. 16.
    Lee, J., Cho, M., Lee, K.M.: Hyper-graph matching via reweighted random walks. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1633–1640. IEEE, June 2011.  https://doi.org/10.1109/Fcvpr.2011.5995387
  17. 17.
    Leutenegger, S., Chli, M., Siegwart, R.: BRISK: binary robust invariant scalable keypoints. In: IEEE International Conference on Computer Vision (ICCV) 2011, pp. 2548–2555, November 2011Google Scholar
  18. 18.
    Loquercio, A., Dymczyk, M., Zeisl, B., Lynen, S., Gilitschenski, I., Siegwart, R.: Efficient descriptor learning for large scale localization. In: ICRA (2017)Google Scholar
  19. 19.
    Lowe, D.: Distinctive Image Features From Scale-invariant Keypoints, vol. 60, pp. 91–110. Kluwer Academic Publishers, Hingham (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lowe, D.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision 1999, vol. 2, pp. 1150–1157 (1999)Google Scholar
  21. 21.
    Lv, X., Wang, Z.J.: Perceptual image hashing based on shape contexts and local feature points. IEEE Trans. Inf. Forensics Secur. 7(3), 1081–1093 (2012).  https://doi.org/10.1109/Ftifs.2012.2190594
  22. 22.
    Myeong, H., Chang, J.Y., Lee, K.M.: Learning object relationships via graph-based context model. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2727–2734. IEEE, June 2012.  https://doi.org/10.1109/Fcvpr.2012.6247995
  23. 23.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision (ICCV) 2011, pp. 2564–2571, November 2011Google Scholar
  24. 24.
    Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011). http://dl.acm.org/citation.cfm?id=1953048.2078187
  25. 25.
    Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., Moreno-Noguer, F.: Discriminative learning of deep convolutional feature point descriptors. In: ICCV (2015)Google Scholar
  26. 26.
    Tian, Y., Patel, J.M.: Tale: a tool for approximate large graph matching. In: 2008 IEEE 24th International Conference on Data Engineering (ICDE 2008), pp. 963–972. IEEE, April 2008.  https://doi.org/10.1109/Ficde.2008.4497505
  27. 27.
    Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph matching: models and global optimization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 596–609. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88688-4_44CrossRefGoogle Scholar
  28. 28.
    Vento, M.: A long trip in the charming world of graphs for pattern recognition. Pattern Recogn. 48(2), 291–301, February 2015.  https://doi.org/10.1016/Fj.patcog.2014.01.002
  29. 29.
    Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: Lift: Learned invariant feature transform. In: ECCV (2016)Google Scholar
  30. 30.
    Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE, June 2008.  https://doi.org/10.1109/Fcvpr.2008.4587500
  31. 31.
    Zickler, S., Efros, A.: Detection of multiple deformable objects using PCA-SIFT. In: Proceedings of the 22nd National Conference on Artificial Intelligence, AAAI 2007, vol. 2, pp. 1127–1132. AAAI Press (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Control and Industrial ElectronicsWarsaw University of TechnologyWarsawPoland

Personalised recommendations