Advertisement

Hemispherical Gaussians for Accurate Light Integration

  • Julian Meder
  • Beat Brüderlin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11114)

Abstract

In real-time computer graphics, approximations are often used to allow for interactive virtual scene rendering. Concerning the on-line lighting of such scenes, an approach getting increased recognition is to approximate the light in every direction of the hemisphere of a surface point using suitable mathematical distribution functions, such as the well-known Spherical Gaussian. A drawback of this distribution is that current methods using it are inaccurate and do not reflect the correct lighting integral over the surface hemisphere. We show new and more accurate convolution of a Spherical Gaussian with a clamped cosine distribution. In short, we propose a closed form approximation of the hemispherical integral of such a distribution in an arbitrary hemisphere. While our use case is the approximation of the hemispherical lighting situation, we believe that our general formulation of the hemispherical integral of a Spherical Gaussian can also be useful in other areas.

References

  1. 1.
    Dachsbacher, C., Stamminger, M.: Reflective shadow maps. In: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, pp. 203–231. I3D 2005. ACM, New York (2005). http://doi.acm.org/10.1145/1053427.1053460
  2. 2.
    Garnier, J., Quetelet, A.: Correspondance mathématique et physique. No. 10, Impr. d’H. Vandekerckhove (1838). https://books.google.de/books?id=8GsEAAAAYAAJ
  3. 3.
    Green, P., Kautz, J., Matusik, W., Durand, F.: View-dependent precomputed light transport using nonlinear Gaussian function approximations. In: Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games, pp. 7–14, I3D 2006. ACM, New York (2006). http://doi.acm.org/10.1145/1111411.1111413
  4. 4.
    Jendersie, J., Kuri, D., Grosch, T.: Precomputed illuminance composition for real-time global illumination. In: Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 129–137, I3D 2016. ACM, New York (2016). http://doi.acm.org/10.1145/2856400.2856407
  5. 5.
    Kajiya, J.T.: The rendering equation. SIGGRAPH Comput. Graph. 20(4), 143–150 (1986). http://doi.acm.org/10.1145/15886.15902CrossRefGoogle Scholar
  6. 6.
    Kaplanyan, A., Dachsbacher, C.: Cascaded light propagation volumes for real-time indirect illumination. In: Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 99–107, I3D 2010. ACM, New York (2010). http://doi.acm.org/10.1145/1730804.1730821
  7. 7.
    Ng, R., Ramamoorthi, R., Hanrahan, P.: All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans. Graph. 22(3), 376–381 (2003). http://doi.acm.org/10.1145/882262.882280CrossRefGoogle Scholar
  8. 8.
    Sloan, P.P.: Stupid spherical harmonics (SH) tricks. In: GDC 2008 (2008)Google Scholar
  9. 9.
    Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph. 21(3), 527–536 (2002). http://doi.acm.org/10.1145/566654.566612
  10. 10.
    Toksvig, M.: Mipmapping normal maps. J. Graph. Tools 10(3), 65–71 (2005). https://doi.org/10.1080/2151237X.2005.10129203CrossRefGoogle Scholar
  11. 11.
    Tokuyoshi, Y.: Virtual spherical Gaussian lights for real-time glossy indirect illumination. Comput. Graph. Forum 34(7), 89–98 (2015). http://dx.doi.org/10.1111/cgf.12748CrossRefGoogle Scholar
  12. 12.
    Tokuyoshi, Y.: Modified filtered importance sampling for virtual spherical Gaussian lights. Comput. Vis. Media 2(4), 343–355 (2016). https://doi.org/10.1007/s41095-016-0063-3CrossRefGoogle Scholar
  13. 13.
    Tsai, Y.T., Shih, Z.C.: All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. In: ACM SIGGRAPH 2006 Papers, pp. 967–976, SIGGRAPH 2006. ACM, New York (2006). http://doi.acm.org/10.1145/1179352.1141981
  14. 14.
    Xu, K., Cao, Y.P., Ma, L.Q., Dong, Z., Wang, R., Hu, S.M.: A practical algorithm for rendering interreflections with all-frequency BRDFS. ACM Trans. Graph. 33(1), 10:1–10:16 (2014). http://doi.acm.org/10.1145/2533687CrossRefGoogle Scholar
  15. 15.
    Xu, K., Ma, L.Q., Ren, B., Wang, R., Hu, S.M.: Interactive hair rendering and appearance editing under environment lighting. ACM Trans. Graph. 30(6), 173:1–173:10 (2011). http://doi.acm.org/10.1145/2070781.2024207Google Scholar
  16. 16.
    Xu, K., Sun, W.L., Dong, Z., Zhao, D.Y., Wu, R.D., Hu, S.M.: Anisotropic spherical Gaussians. ACM Trans. Graph. 32(6), 209:1–209:11 (2013). http://doi.acm.org/10.1145/2508363.2508386Google Scholar
  17. 17.
    Yan, L.Q., Zhou, Y., Xu, K., Wang, R.: Accurate translucent material rendering under spherical Gaussian lights. Comput. Graph. Forum 31(7pt2), 2267–2276 (2012). http://dx.doi.org/10.1111/j.1467-8659.2012.03220.xCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.TU IlmenauIlmenauGermany
  2. 2.3DInteractive GmbHIlmenauGermany

Personalised recommendations