A Graph Representation and Similarity Measure for Brain Networks with Nodal Features
Abstract
The human brain demonstrates a network structure that is commonly represented using graphs with pseudonym connectome. Traditionally, connectomes encode only inter-regional connectivity as edges, while regional information, such as centrality of a node that may be crucial to the analysis, is usually handled as statistical covariates. This results in an incomplete encoding of valuable information. In order to alleviate such problems, we propose an enriched connectome encoding regional properties of the brain network, such as structural node degree, strength, and centrality, as node features in addition to representing structural connectivity between regions as weighted edges. We further present an efficient graph matching algorithm, providing two measures to quantify similarity between enriched connectomes. We demonstrate the utility of our graph representation and similarity measures on classifying a traumatic brain injury dataset. Our results show that the enriched representation combining nodal features and structural connectivity information with the graph matching based similarity measures is able to differentiate the groups better than the traditional connectome representation.
Keywords
Annotated brain networks Brain graphs Multi-feature representation Graph matchingNotes
Acknowledgements
This work was funded by NIH grants R01HD089390-01A1, 1 R01 NS096606, 5R01NS092398, and 5R01NS065980.
References
- 1.Tunç, B., Verma, R.: Unifying inference of meso-scale structures in networks. PLoS One 10(11), e0143133 (2015)CrossRefGoogle Scholar
- 2.Newman, M.E.J., Clauset, A.: Structure and inference in annotated networks. Nat. Commun. 7, 11863 (2016)CrossRefGoogle Scholar
- 3.Bullmore, E.T., Sporns, O., Solla, S.A.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)CrossRefGoogle Scholar
- 4.Petersen, S.E., Sporns, O.: Brain networks and cognitive architectures. Neuron 88(1), 207–219 (2015)CrossRefGoogle Scholar
- 5.Van Den Heuvel, M.P., Pol, H.E.H.: Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20(8), 519–534 (2010)CrossRefGoogle Scholar
- 6.Chen, L., Vogelstein, J.T., Lyzinski, V., Priebe, C.E.: A joint graph inference case study: the C. elegans chemical and electrical connectomes. In: Worm, vol. 5, p. e1142041. Taylor & Francis (2016)Google Scholar
- 7.Fishkind, D.E., Adali, S., Priebe, C.E.: Seeded Graph Matching. arXiv preprint, arXiv:1209.0367v1 (2012)
- 8.Richiardi, J., Eryilmaz, H., Schwartz, S., Vuilleumier, P., Van De Ville, D.: Decoding brain states from fMRI connectivity graphs. Neuroimage 56(2), 616–626 (2011)CrossRefGoogle Scholar
- 9.Ktena, S.I., Parisot, S., Passerat-Palmbach, J.: Comparison of Brain Networks with Unknown Correspondences. arXiv preprint arXiv:1611.04783, October 2016
- 10.Raj, A., Mueller, S.G., Young, K., Laxer, K.D., Weiner, M.: Network-level analysis of cortical thickness of the epileptic brain. Neuroimage 52(4), 1302–1313 (2010)CrossRefGoogle Scholar
- 11.Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for computing the edit distance of graphs. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 1–12. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72903-7_1CrossRefzbMATHGoogle Scholar
- 12.Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y., Martineau, P.: A parallel graph edit distance algorithm. Expert Syst. Appl. 94, 41–57 (2018)CrossRefGoogle Scholar
- 13.Kleinberg, J., Tardos, É.: Approximation algorithms for classification problems with pairwise relationships: metric labeling and markov random fields. J. ACM 49(5), 616–639 (2002)MathSciNetCrossRefGoogle Scholar
- 14.Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation algorithms and its application to network design problems. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-hard Problems, pp. 144–191. PWS Publishing Co., Boston (1997)Google Scholar
- 15.Osmanlıoğlu, Y., Ontañón, S., Hershberg, U., Shokoufandeh, A.: Efficient approximation of labeling problems with applications to immune repertoire analysis. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2410–2415. IEEE (2016)Google Scholar
- 16.Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006)CrossRefGoogle Scholar
- 17.Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)CrossRefGoogle Scholar
- 18.Yeo, B.T.T., et al.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106(3), 1125–1165 (2011)CrossRefGoogle Scholar