Advertisement

A Graph Representation and Similarity Measure for Brain Networks with Nodal Features

  • Yusuf Osmanlıoğlu
  • Birkan Tunç
  • Jacob A. Alappatt
  • Drew Parker
  • Junghoon Kim
  • Ali Shokoufandeh
  • Ragini Verma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11044)

Abstract

The human brain demonstrates a network structure that is commonly represented using graphs with pseudonym connectome. Traditionally, connectomes encode only inter-regional connectivity as edges, while regional information, such as centrality of a node that may be crucial to the analysis, is usually handled as statistical covariates. This results in an incomplete encoding of valuable information. In order to alleviate such problems, we propose an enriched connectome encoding regional properties of the brain network, such as structural node degree, strength, and centrality, as node features in addition to representing structural connectivity between regions as weighted edges. We further present an efficient graph matching algorithm, providing two measures to quantify similarity between enriched connectomes. We demonstrate the utility of our graph representation and similarity measures on classifying a traumatic brain injury dataset. Our results show that the enriched representation combining nodal features and structural connectivity information with the graph matching based similarity measures is able to differentiate the groups better than the traditional connectome representation.

Keywords

Annotated brain networks Brain graphs Multi-feature representation Graph matching 

Notes

Acknowledgements

This work was funded by NIH grants R01HD089390-01A1, 1 R01 NS096606, 5R01NS092398, and 5R01NS065980.

References

  1. 1.
    Tunç, B., Verma, R.: Unifying inference of meso-scale structures in networks. PLoS One 10(11), e0143133 (2015)CrossRefGoogle Scholar
  2. 2.
    Newman, M.E.J., Clauset, A.: Structure and inference in annotated networks. Nat. Commun. 7, 11863 (2016)CrossRefGoogle Scholar
  3. 3.
    Bullmore, E.T., Sporns, O., Solla, S.A.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)CrossRefGoogle Scholar
  4. 4.
    Petersen, S.E., Sporns, O.: Brain networks and cognitive architectures. Neuron 88(1), 207–219 (2015)CrossRefGoogle Scholar
  5. 5.
    Van Den Heuvel, M.P., Pol, H.E.H.: Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20(8), 519–534 (2010)CrossRefGoogle Scholar
  6. 6.
    Chen, L., Vogelstein, J.T., Lyzinski, V., Priebe, C.E.: A joint graph inference case study: the C. elegans chemical and electrical connectomes. In: Worm, vol. 5, p. e1142041. Taylor & Francis (2016)Google Scholar
  7. 7.
    Fishkind, D.E., Adali, S., Priebe, C.E.: Seeded Graph Matching. arXiv preprint, arXiv:1209.0367v1 (2012)
  8. 8.
    Richiardi, J., Eryilmaz, H., Schwartz, S., Vuilleumier, P., Van De Ville, D.: Decoding brain states from fMRI connectivity graphs. Neuroimage 56(2), 616–626 (2011)CrossRefGoogle Scholar
  9. 9.
    Ktena, S.I., Parisot, S., Passerat-Palmbach, J.: Comparison of Brain Networks with Unknown Correspondences. arXiv preprint arXiv:1611.04783, October 2016
  10. 10.
    Raj, A., Mueller, S.G., Young, K., Laxer, K.D., Weiner, M.: Network-level analysis of cortical thickness of the epileptic brain. Neuroimage 52(4), 1302–1313 (2010)CrossRefGoogle Scholar
  11. 11.
    Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for computing the edit distance of graphs. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 1–12. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72903-7_1CrossRefzbMATHGoogle Scholar
  12. 12.
    Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y., Martineau, P.: A parallel graph edit distance algorithm. Expert Syst. Appl. 94, 41–57 (2018)CrossRefGoogle Scholar
  13. 13.
    Kleinberg, J., Tardos, É.: Approximation algorithms for classification problems with pairwise relationships: metric labeling and markov random fields. J. ACM 49(5), 616–639 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation algorithms and its application to network design problems. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-hard Problems, pp. 144–191. PWS Publishing Co., Boston (1997)Google Scholar
  15. 15.
    Osmanlıoğlu, Y., Ontañón, S., Hershberg, U., Shokoufandeh, A.: Efficient approximation of labeling problems with applications to immune repertoire analysis. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2410–2415. IEEE (2016)Google Scholar
  16. 16.
    Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006)CrossRefGoogle Scholar
  17. 17.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)CrossRefGoogle Scholar
  18. 18.
    Yeo, B.T.T., et al.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106(3), 1125–1165 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yusuf Osmanlıoğlu
    • 1
  • Birkan Tunç
    • 2
  • Jacob A. Alappatt
    • 1
  • Drew Parker
    • 1
  • Junghoon Kim
    • 3
  • Ali Shokoufandeh
    • 4
  • Ragini Verma
    • 1
  1. 1.Center for Biomedical Image Computing and Analytics, Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Center for Autism Research, Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  3. 3.CUNY School of Medicine, The City College of New YorkNew YorkUSA
  4. 4.Department of Computer ScienceDrexel UniversityPhiladelphiaUSA

Personalised recommendations