Graph Saliency Maps Through Spectral Convolutional Networks: Application to Sex Classification with Brain Connectivity

  • Salim ArslanEmail author
  • Sofia Ira Ktena
  • Ben Glocker
  • Daniel Rueckert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11044)


Graph convolutional networks (GCNs) allow to apply traditional convolution operations in non-Euclidean domains, where data are commonly modelled as irregular graphs. Medical imaging and, in particular, neuroscience studies often rely on such graph representations, with brain connectivity networks being a characteristic example, while ultimately seeking the locus of phenotypic or disease-related differences in the brain. These regions of interest (ROIs) are, then, considered to be closely associated with function and/or behaviour. Driven by this, we explore GCNs for the task of ROI identification and propose a visual attribution method based on class activation mapping. By undertaking a sex classification task as proof of concept, we show that this method can be used to identify salient nodes (brain regions) without prior node labels. Based on experiments conducted on neuroimaging data of more than 5000 participants from UK Biobank, we demonstrate the robustness of the proposed method in highlighting reproducible regions across individuals. We further evaluate the neurobiological relevance of the identified regions based on evidence from large-scale UK Biobank studies.



This research has been conducted using the UK Biobank Resource under Application Number 12579 and funded by the EPSRC Doctoral Prize Fellowship funding scheme.


  1. 1.
    Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Sig. Process. Mag. 34(4), 18–42 (2017)CrossRefGoogle Scholar
  2. 2.
    Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)
  3. 3.
    Satterthwaite, T.D., Wolf, D.H., et al.: Linked sex differences in cognition and functional connectivity in youth. Cereb. Cortex 25(9), 2383–2394 (2014)CrossRefGoogle Scholar
  4. 4.
    Ritchie, S.J., Cox, S.R., Shen, X., et al.: Sex differences in the adult human brain: evidence from 5,216 UK Biobank participants. bioRxiv (2017)Google Scholar
  5. 5.
    Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921–2929. IEEE (2016)Google Scholar
  6. 6.
    Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Proceedings of CVPR, vol. 1, p. 3 (2017)Google Scholar
  7. 7.
    Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)Google Scholar
  8. 8.
    Levie, R., Monti, F., Bresson, X., Bronstein, M.M.: CayleyNets: graph convolutional neural networks with complex rational spectral filters. arXiv preprint arXiv:1705.07664 (2017)
  9. 9.
    Zhou, Z., Li, X.: Convolution on graph: a high-order and adaptive approach (2018)Google Scholar
  10. 10.
    Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)
  11. 11.
    Baumgartner, C.F., Koch, L.M., Tezcan, K.C., Ang, J.X., Konukoglu, E.: Visual feature attribution using Wasserstein GANs. arXiv preprint arXiv:1711.08998 (2017)
  12. 12.
    Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Sig. Process. Mag. 30(3), 83–98 (2013)CrossRefGoogle Scholar
  13. 13.
    Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep scene CNNs. arXiv preprint arXiv:1412.6856 (2014)
  14. 14.
    Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)
  15. 15.
    Miller, K.L., Alfaro-Almagro, F., Bangerter, N.K., et al.: Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19(11), 1523 (2016)CrossRefGoogle Scholar
  16. 16.
    Smith, S.M., Hyvärinen, A., Varoquaux, G., Miller, K.L., Beckmann, C.F.: Group-PCA for very large fMRI datasets. Neuroimage 101, 738–749 (2014)CrossRefGoogle Scholar
  17. 17.
    Beckmann, C.F., Smith, S.M.: Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE TMI 23(2), 137–152 (2004)Google Scholar
  18. 18.
    Smith, S.M., et al.: Network modelling methods for fMRI. Neuroimage 54(2), 875–891 (2011)CrossRefGoogle Scholar
  19. 19.
    Ktena, S.I., et al.: Metric learning with spectral graph convolutions on brain connectivity networks. NeuroImage 169, 431–442 (2018)CrossRefGoogle Scholar
  20. 20.
    Arslan, S., Ktena, S.I., Makropoulos, A., Robinson, E.C., Rueckert, D., Parisot, S.: Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex. NeuroImage 170, 5–30 (2018). Segmenting the BrainCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Salim Arslan
    • 1
    Email author
  • Sofia Ira Ktena
    • 1
  • Ben Glocker
    • 1
  • Daniel Rueckert
    • 1
  1. 1.Biomedical Image Analysis Group, Department of ComputingImperial College LondonLondonUK

Personalised recommendations