Advertisement

Rule Learning from Knowledge Graphs Guided by Embedding Models

  • Vinh Thinh Ho
  • Daria Stepanova
  • Mohamed H. Gad-Elrab
  • Evgeny Kharlamov
  • Gerhard Weikum
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11136)

Abstract

Rules over a Knowledge Graph (KG) capture interpretable patterns in data and various methods for rule learning have been proposed. Since KGs are inherently incomplete, rules can be used to deduce missing facts. Statistical measures for learned rules such as confidence reflect rule quality well when the KG is reasonably complete; however, these measures might be misleading otherwise. So it is difficult to learn high-quality rules from the KG alone, and scalability dictates that only a small set of candidate rules could be generated. Therefore, the ranking and pruning of candidate rules are major problems. To address this issue, we propose a rule learning method that utilizes probabilistic representations of missing facts. In particular, we iteratively extend rules induced from a KG by relying on feedback from a precomputed embedding model over the KG and external information sources including text corpora. Experiments on real-world KGs demonstrate the effectiveness of our novel approach both with respect to the quality of the learned rules and fact predictions that they produce.

Notes

Acknowledgements

This work was partially supported by the EPSRC projects DBOnto, MaSI\(^3\) and ED\(^3\).

References

  1. 1.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. SIGMOD Rec. 22(2), 207–216 (1993)CrossRefGoogle Scholar
  2. 2.
    Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proceedings of NIPS, pp. 2787–2795 (2013)Google Scholar
  3. 3.
    Chen, Y., Goldberg, S., Wang, D.Z., Johri, S.S.: Ontological pathfinding. In: SIGMOD (2016)Google Scholar
  4. 4.
    Cohen, W.W.: Tensorlog: a differentiable deductive database. CoRR, abs/1605.06523 (2016)Google Scholar
  5. 5.
    Corapi, D., Sykes, D., Inoue, K., Russo, A.: Probabilistic rule learning in nonmonotonic domains. In: Leite, J., Torroni, P., Ågotnes, T., Boella, G., van der Torre, L. (eds.) CLIMA 2011. LNCS (LNAI), vol. 6814, pp. 243–258. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22359-4_17CrossRefzbMATHGoogle Scholar
  6. 6.
    d’Amato, C., Staab, S., Tettamanzi, A.G., Minh, T.D., Gandon, F.: Ontology enrichment by discovering multi-relational association rules from ontological knowledge bases. In: SAC, pp. 333–338 (2016)Google Scholar
  7. 7.
    Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. J. Artif. Intell. Res. 61, 1–64 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fürnkranz, J., Kliegr, T.: A brief overview of rule learning. In: Bassiliades, N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 54–69. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21542-6_4CrossRefGoogle Scholar
  9. 9.
    Gad-Elrab, M.H., Stepanova, D., Urbani, J., Weikum, G.: Exception-enriched rule learning from knowledge graphs. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 234–251. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46523-4_15CrossRefGoogle Scholar
  10. 10.
    Galarraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24(6), 707–730 (2015)CrossRefGoogle Scholar
  11. 11.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP/SLP, pp. 1070–1080. MIT Press (1988)Google Scholar
  12. 12.
    Glorot, X., Bordes, A., Weston, J., Bengio, Y.: A semantic matching energy function for learning with multi-relational data. CoRR, abs/1301.3485 (2013)Google Scholar
  13. 13.
    Goethals, B., Van den Bussche, J.: Relational association rules: getting Warmer. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI), vol. 2447, pp. 125–139. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45728-3_10CrossRefGoogle Scholar
  14. 14.
    Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Jointly embedding knowledge graphs and logical rules. In: EMNLP (2016)Google Scholar
  15. 15.
    Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Knowledge graph embedding with iterative guidance from soft rules. CoRR, abs/1711.11231 (2017)Google Scholar
  16. 16.
    Kharlamov, E., et al.: Semantic rules for machine diagnostics: execution and management. In: CIKM, pp. 2131–2134 (2017)Google Scholar
  17. 17.
    Kotsiantis, S., Kanellopoulos, D.: Association rules mining: a recent overview. GESTS Int. Trans. CS Eng. 32(1), 71–82 (2006)Google Scholar
  18. 18.
    Mannila, H., Toivonen, H., Verkamo, A.I.: Discovering frequent episodes in sequences. In: KDD 1995 (1995)Google Scholar
  19. 19.
    Mehdi, G., et al.: Semantic rule-based equipment diagnostics. In: d’Amato, C., Fernandez, M., Tamma, V., Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 314–333. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68204-4_29CrossRefGoogle Scholar
  20. 20.
    Duc Tran, M., d’Amato, C., Nguyen, B.T., Tettamanzi, A.G.B.: Comparing rule evaluation metrics for the evolutionary discovery of multi-relational association rules in the semantic web. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 289–305. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-77553-1_18CrossRefGoogle Scholar
  21. 21.
    Mitchell, T., et al.: Never-ending learning. In: AAAI (2015)Google Scholar
  22. 22.
    Nickel, M., Rosasco, L., Poggio, T.A.: Holographic embeddings of knowledge graphs. In: AAAI (2016)Google Scholar
  23. 23.
    Nickel, M., Tresp, V., Kriegel, H.-P.: A three-way model for collective learning on multi-relational data. In: ICML (2011)Google Scholar
  24. 24.
    Piatetsky-Shapiro, G.: Discovery, analysis, and presentation of strong rules. In: Knowledge Discovery in Databases, pp. 229–248. AAAI/MIT Press (1991)Google Scholar
  25. 25.
    Raedt, L.D., Dries, A., Thon, I., den Broeck, G.V., Verbeke, M.: Inducing probabilistic relational rules from probabilistic examples. In: IJCAI, pp. 1835–1843. AAAI Press (2015)Google Scholar
  26. 26.
    Raedt, L.D., Thon, I.: Probabilistic rule learning. In: ILP (2010)Google Scholar
  27. 27.
    Ras, Z.W., Wieczorkowska, A.: Action-rules: how to increase profit of a company. In: Zighed, D.A., Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 587–592. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45372-5_70CrossRefGoogle Scholar
  28. 28.
    Rastogi, P., Poliak, A., Durme, B.V.: Training relation embeddings under logical constraints. In: KG4IR (2017)Google Scholar
  29. 29.
    Ringsquandl, M., et al.: Event-enhanced learning for knowledge graph completion. In: ESWC (2018)Google Scholar
  30. 30.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of WWW, pp. 697–706 (2007)Google Scholar
  31. 31.
    Tanon, T.P., Stepanova, D., Razniewski, S., Mirza, P., Weikum, G.: Completeness-aware rule learning from knowledge graphs. In: d’Amato, C. (ed.) ISWC 2017. LNCS, vol. 10587, pp. 507–525. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68288-4_30CrossRefGoogle Scholar
  32. 32.
    Tran, H.D., Stepanova, D., Gad-Elrab, M.H., Lisi, F.A., Weikum, G.: Towards nonmonotonic relational learning from knowledge graphs. In: ILP, pp. 94–107 (2016)Google Scholar
  33. 33.
    Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. CACM 57(10), 78–85 (2014)CrossRefGoogle Scholar
  34. 34.
    Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)CrossRefGoogle Scholar
  35. 35.
    Wang, Q., Wang, B., Guo, L.: Knowledge base completion using embeddings and rules. In: IJCAI (2015)Google Scholar
  36. 36.
    Wang, Z., Li, J.: RDF2Rules: Learning rules from RDF knowledge bases by mining frequent predicate cycles. CoRR, abs/1512.07734 (2015)Google Scholar
  37. 37.
    Wojtusiak, J.: Rule learning in healthcare and health services research. In: Dua, S., Acharya, U.R., Dua, P. (eds.) Machine Learning in Healthcare Informatics. ISRL, vol. 56, pp. 131–145. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-40017-9_7CrossRefGoogle Scholar
  38. 38.
    Xiao, H., Huang, M., Meng, L., Zhu, X.: SSP: semantic space projection for knowledge graph embedding with text descriptions. In: AAAI (2017)Google Scholar
  39. 39.
    Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. CoRR, abs/1412.6575 (2014)Google Scholar
  40. 40.
    Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: NIPS, pp. 2316–2325 (2017)Google Scholar
  41. 41.
    Zupanc, K., Davis, J.: Estimating rule quality for knowledge base completion with the relationship between coverage assumption. In: WWW 2018, pp. 1073–1081 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Vinh Thinh Ho
    • 1
  • Daria Stepanova
    • 1
  • Mohamed H. Gad-Elrab
    • 1
  • Evgeny Kharlamov
    • 2
  • Gerhard Weikum
    • 1
  1. 1.Max Planck Institute for InformaticsSaarbrückenGermany
  2. 2.University of OxfordOxfordUK

Personalised recommendations