Advertisement

Exploring RDFS KBs Using Summaries

  • Georgia TroullinouEmail author
  • Haridimos Kondylakis
  • Kostas Stefanidis
  • Dimitris Plexousakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11136)

Abstract

Ontology summarization aspires to produce an abridged version of the original data source highlighting its most important concepts. However, in an ideal scenario, the user should not be limited only to static summaries. Starting from the summary, s/he should be able to further explore the data source requesting more detailed information for a particular part of it. In this paper, we present a new approach enabling the dynamic exploration of summaries through two novel operations zoom and extend. Extend focuses on a specific subgraph of the initial summary, whereas zoom on the whole graph, both providing granular information access to the end-user. We show that calculating these operators is NP-complete and provide approximations for their calculation. Then, we show that using extend, we can answer more queries focusing on specific nodes, whereas using global zoom, we can answer overall more queries. Finally, we show that the algorithms employed can efficiently approximate both operators.

References

  1. 1.
    RDF Schema 1.1. http://www.w3.org/TR/rdf-schema/. Accessed Apr 2018
  2. 2.
  3. 3.
    Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds.): Advances in Steiner Trees. Kluwer Academic Publishers, Dordrecht (2000)zbMATHGoogle Scholar
  4. 4.
    Agathangelos, G., Troullinou, G., Kondylakis, H., Stefanidis, K., Plexousakis, D.: RDF query answering using apache spark: review and assessment. In: ICDE (2018)Google Scholar
  5. 5.
    Boldi, P., Vigna, S.: Axioms for centrality. Internet Math. 10(3–4), 222–262 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Christophides, V., Efthymiou, V., Stefanidis, K.: Entity Resolution in the Web of Data. Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool Publishers, San Rafael (2015)Google Scholar
  7. 7.
    de Souza, K.X.S., dos Santos, A.D., Evangelista, S.R.M.: Visualization of ontologies through hypertrees. In: CLIHC (2003)Google Scholar
  8. 8.
    Erdmann, M., Waterfeld, W.: Overview of the neon toolkit. In: Ontology Engineering in a Networked World, pp. 281–301 (2012)Google Scholar
  9. 9.
    Fafalios, P., Iosifidis, V., Stefanidis, K., Ntoutsi, E.: Multi-aspect entity-centric analysis of big social media archives. In: TPDL (2017)Google Scholar
  10. 10.
    Jiao, Z.L., Liu, Q., Li, Y., Marriott, K., Wybrow, M.: Visualization of large ontologies with landmarks. In: GRAPP and IVAPP (2013)Google Scholar
  11. 11.
    Kondylakis, H., Troullinou, G., Stefanidis, K., Plexousakis, D.: Beyond summaries for ontology exploration. ERCIM News 2018(113) (2018)Google Scholar
  12. 12.
    Kriglstein, S., Wallner, G.: Knoocks - a visualization approach for OWL lite ontologies. In: CISIS (2010)Google Scholar
  13. 13.
    Kuhar, S., Podgorelec, V.: Ontology visualization for domain experts: a new solution. In: International Conference on Information Visualisation, IV (2012)Google Scholar
  14. 14.
    Lohmann, S., Link, V., Marbach, E., Negru, S.: WebVOWL: web-based Visualization of Ontologies. In: Lambrix, P. (ed.) EKAW 2014. LNCS (LNAI), vol. 8982, pp. 154–158. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-17966-7_21CrossRefGoogle Scholar
  15. 15.
    Motta, E., Peroni, S., Li, N., d’Aquin, M.: Kc-Viz: a novel approach to visualizing and navigating ontologies. In: EKAW (2010)Google Scholar
  16. 16.
    Musen, M.A.: The protégé project: a look back and a look forward. AI Matters 1(4), 4–12 (2015)CrossRefGoogle Scholar
  17. 17.
    Pappas, A., Troullinou, G., Roussakis, G., Kondylakis, H., Plexousakis, D.: Exploring importance measures for summarizing RDF/S KBs. In: ESWC (2017)Google Scholar
  18. 18.
    Plaisant, C., Grosjean, J., Bederson, B.B.: SpaceTree: supporting exploration in large node link tree, design evolution and empirical evaluation. In: InfoVis (2002)Google Scholar
  19. 19.
    Roussakis, Y., Chrysakis, I., Stefanidis, K., Flouris, G., Stavrakas, Y.: A flexible framework for understanding the dynamics of evolving RDF datasets. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 495–512. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25007-6_29CrossRefGoogle Scholar
  20. 20.
    Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: IEEE Symposium on Visual Languages (1996)Google Scholar
  21. 21.
    Peroni, S., Motta, E., d’Aquin, M.: Identifying key concepts in an ontology, through the integration of cognitive principles with statistical and topological measures. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 242–256. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89704-0_17CrossRefGoogle Scholar
  22. 22.
    Stefanidis, K., Chrysakis, I., Flouris, G.: On designing archiving policies for evolving RDF datasets on the web. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 43–56. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12206-9_4CrossRefGoogle Scholar
  23. 23.
    Storey, M.D., Noy, N.F., Musen, M.A., Best, C., Fergerson, R.W., Ernst, N.A.: Jambalaya: an interactive environment for exploring ontologies. In: IUI (2002)Google Scholar
  24. 24.
    Troullinou, G., Kondylakis, H., Daskalaki, E., Plexousakis, D.: RDF digest: efficient summarization of RDF/S KBs. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 119–134. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18818-8_8CrossRefGoogle Scholar
  25. 25.
    Troullinou, G., Kondylakis, H., Daskalaki, E., Plexousakis, D.: RDF digest: ontology exploration using summaries. In: ISWC (2015)Google Scholar
  26. 26.
    Troullinou, G., Kondylakis, H., Daskalaki, E., Plexousakis, D.: Ontology understanding without tears: the summarization approach. Semant. Web 8(6), 797–815 (2017)CrossRefGoogle Scholar
  27. 27.
    Voß, S.: Steiner’s problem in graphs: heuristic methods. Discrete Appl. Math. 40(1), 45–72 (1992)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wang, T.D., Parsia, B.: CropCircles: topology sensitive visualization of OWL class hierarchies. In: Cruz, I. (ed.) ISWC 2006. LNCS, vol. 4273, pp. 695–708. Springer, Heidelberg (2006).  https://doi.org/10.1007/11926078_50CrossRefGoogle Scholar
  29. 29.
    Wu, G., Li, J., Feng, L., Wang, K.: Identifying potentially important concepts and relations in an ontology. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 33–49. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88564-1_3CrossRefGoogle Scholar
  30. 30.
    Zhang, X., Cheng, G., Qu, Y.: Ontology summarization based on RDF sentence graph. In: WWW (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Georgia Troullinou
    • 1
    Email author
  • Haridimos Kondylakis
    • 1
  • Kostas Stefanidis
    • 2
  • Dimitris Plexousakis
    • 1
  1. 1.ICS-FORTHHeraklionGreece
  2. 2.University of TampereTampereFinland

Personalised recommendations