Advertisement

Getting the Most Out of Wikidata: Semantic Technology Usage in Wikipedia’s Knowledge Graph

  • Stanislav MalyshevEmail author
  • Markus KrötzschEmail author
  • Larry GonzálezEmail author
  • Julius GonsiorEmail author
  • Adrian BielefeldtEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11137)

Abstract

Wikidata is the collaboratively curated knowledge graph of the Wikimedia Foundation (WMF), and the core project of Wikimedia’s data management strategy. A major challenge for bringing Wikidata to its full potential was to provide reliable and powerful services for data sharing and query, and the WMF has chosen to rely on semantic technologies for this purpose. A live SPARQL endpoint, regular RDF dumps, and linked data APIs are now forming the backbone of many uses of Wikidata. We describe this influential use case and its underlying infrastructure, analyse current usage, and share our lessons learned and future plans.

Notes

Acknowledgements

This work was partly supported by the German Research Foundation (DFG) in CRC 912 (HAEC) and in Emmy Noether grant KR 4381/1-1 (DIAMOND).

References

  1. 1.
    Bielefeldt, A., Gonsior, J., Krötzsch, M.: Practical linked data access via SPARQL: the case of wikidata. In: Proceedings of WWW2018 Workshop on Linked Data on the Web (LDOW-18). CEUR Workshop Proceedings, CEUR-WS.org (2018)Google Scholar
  2. 2.
    Bischof, S., Krötzsch, M., Polleres, A., Rudolph, S.: Schema-Agnostic Query Rewriting in SPARQL 1.1. In: Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 584–600. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11964-9_37CrossRefGoogle Scholar
  3. 3.
    Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL query logs. Proc. VLDB Endow. 11, 149–161 (2017)CrossRefGoogle Scholar
  4. 4.
    Burgstaller-Muehlbacher, S., Waagmeester, A., Mitraka, E., Turner, J., Putman, T., Leong, J., Naik, C., Pavlidis, P., Schriml, L., Good, B.M., sSu, A.I.: Wikidata as a semantic framework for the Gene Wiki initiative. Database 2016, baw015 (2016)Google Scholar
  5. 5.
    Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing wikidata to the linked data web. In: Mika, P. et al. [11], pp, 50–65Google Scholar
  6. 6.
    Florescu, D., Levy, A., Suciu, D.: Query containment for conjunctive queries with regular expressions. In: Mendelzon, A.O., Paredaens, J. (eds.) Proceedings of 17th Symposium on Principles of Database Systems (PODS 1998), pp. 139–148. ACM (1998)Google Scholar
  7. 7.
    Hernández, D., Hogan, A., Riveros, C., Rojas, C., Zerega, E.: Querying wikidata: comparing SPARQL, relational and graph databases. In: Groth, P., et al. (eds.) ISWC 2016, Part II. LNCS, vol. 9982, pp. 88–103. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46547-0_10CrossRefGoogle Scholar
  8. 8.
    Lebo, T., Sahoo, S., McGuinness, D. (eds.): PROV-O: The PROV Ontology. W3C Recommendation, 30 April 2013. http://www.w3.org/TR/prov-o
  9. 9.
    Marx, M., Krötzsch, M.: SQID: Towards ontological reasoning for Wikidata. In: Nikitina, N., Song, D. (eds.) Proceedings of the ISWC 2017 Posters & Demonstrations Track. CEUR Workshop Proceedings, CEUR-WS.org, October 2017Google Scholar
  10. 10.
    Marx, M., Krötzsch, M., Thost, V.: Logic on MARS: Ontologies for generalised property graphs. In: Proceedings of 26th International Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 1188–1194 (2017)Google Scholar
  11. 11.
    Mika, P., et al.: ISWC 2014, Part I. LNCS, vol. 8796. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11964-9CrossRefGoogle Scholar
  12. 12.
    Morsey, M., Lehmann, J., Auer, S., Stadler, C., Hellmann, S.: DBpedia and the live extraction of structured data from Wikipedia. Program: Electron. Libr. Inf. Syst. 46(2), 157–181 (2012)CrossRefGoogle Scholar
  13. 13.
    Picalausa, F., Vansummeren, S.: What are real SPARQL queries like? In: Virgilio, R.D., Giunchiglia, F., Tanca, L. (eds.) Proceedings of International Workshop on Semantic Web Information Management (SWIM 2011), p. 6. ACM (2011)Google Scholar
  14. 14.
    Rietveld, L., Hoekstra, R.: Man vs. machine: Differences in SPARQL queries. In: Proceedings of 4th USEWOD Workshop on Usage Analysis and the Web of Data. usewod.org (2014)Google Scholar
  15. 15.
    Rietveld, L., Hoekstra, R.: The YASGUI family of SPARQL clients. Seman. Web 8(3), 373–383 (2017)CrossRefGoogle Scholar
  16. 16.
    Spitz, A., Dixit, V., Richter, L., Gertz, M., Geiß, J.: State of the union: A data consumer’s perspective on Wikidata and its properties for the classification and resolution of entities. In: Proceedings of ICWSM 2016 Wiki Workshop. AAAI Workshops, vol. WS-16-17. AAAI Press (2016)Google Scholar
  17. 17.
    Tanon, T.P., Vrandecic, D., Schaffert, S., Steiner, T., Pintscher, L.: From Freebase to Wikidata: The great migration. In: Bourdeau, J., Hendler, J., Nkambou, R., Horrocks, I., Zhao, B.Y. (eds.) Proceedings of 25th International Conference on World Wide Web (WWW 2016), pp. 1419–1428. ACM (2016)Google Scholar
  18. 18.
    Vandenbussche, P., Umbrich, J., Matteis, L., Hogan, A., Buil Aranda, C.: SPARQLES: monitoring public SPARQL endpoints. Seman. Web 8(6), 1049–1065 (2017)CrossRefGoogle Scholar
  19. 19.
    Vrandečić, D., Krötzsch, M.: Wikidata: A free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)CrossRefGoogle Scholar
  20. 20.
    Wagner, C., Graells-Garrido, E., Garcia, D., Menczer, F.: Women through the glass ceiling: gender asymmetries in wikipedia. EPJ Data Sci. 5(1), 5 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Wikimedia FoundationSan FranciscoU.S.A.
  2. 2.cfaedTU DresdenDresdenGermany

Personalised recommendations